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As a method for representing development, latent trait theory is presented in terms of a
statistical model containing individual parameters and a structure on both the first and second
moments of the random variables reflecting growth. Maximum likelihood parameter estimates
and associated asymptotic tests follow directly. These procedures may be viewed as an alter-
native to standard repeated measures ANOVA and to first-order auto-regressive methods. As
formulated, the model encompasses cohort sequential designs and allow for period or practice
effects. A numerical illustration using data initially collected by Nesselroade and Baltes is
presented.
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Introduction

Tucker (1958) developed the idea of determining parameters of a functional relation
by factor analysis. Concurrently, Rao (1958) sketched out similar procedures. Scher,
Young and Meredith (1960) also have discussed the technique, while Anderson (1963)
approached the same problem from a time series perspective. In general, however,
these procedures have been rarely used, merit wider recognition by behavioral and
biological scientists, and deserve review in the broader context provided by recent
research on individual growth curves (Bock & Thissen, 1980; Rogosa, Brandt & Zi-
mowski, 1982; Rogosa & Willett, 1985a) and curves in general (Ramsey, 1982). We will
show that such techniques provide generalizations of and alternatives to the usual
repeated measures ANOVA procedures or first-order auto-regressive models.

Suppose we are interested in some univariate random variable, X(t), with possible
realizations, xi(t), where i denotes an individual subject or entity in an experiment or
study. The random variable, X, and the nonrandom variable, t, may be continuous or

"discrete. In practice we will always assume t to be discrete and X continuous. We
regard X(t) as functionally related to t, where t may, for example, denote time, age,
grade, trial number, degree of arousal, experimental condition, test form or stimulus
intensity, and might even be unordered and multivariate, as in the dummy coding of
unordered experimental conditions.

The realizations, xi(t), will be assumed decomposable into a sum of elementary
(generally unknown) basis functions and error. Explicitly,
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xi(t) = ~, wikgk(t) + ei(t), (1)
k=l

where 9k(t) denotes a basis function, implying that every xi(t) can be expressed, apart
from measurement error, as a linear combination of the vector basis furnished by the
yk(t), k = 1 ..... r. Generally, for basis functions to be useful and interpretable, r must
be relatively small. This formulation will be shown to be unlike various Markovian
models for growth (see J6reskog, 1970) in that the increments are not independent. 
we will demonstrate in the subsequent development, the functions, 9k(t), can be as-
sumed partially or completely known. ’

The random variable, E(t), with realizations, el(t), is an error of measurement as a
function of t, although we may think of it as comprising errors of approximation as well.
The additional assumptions we will make, confine E(t) to bring measurement error
although in the sequel we will indicate how these assumptions may be relaxed. The
random variables, Wk, have realizations, wik, which are the weights or saliences that
characterize the i-th individual and represent the degree to which the i-th subject
utilizes the single basis, 9k(t). Thus, the collection of realizations, {xi(t) }, for all subjects
relate to the common set of basis functions, {yk(t)}, with individual differences, repre-
sented by the weights, {wik}. If wik were classificatory (i.e., multinomial), then 9k(t)
would represent a type of development and wik would indicate class membership. This
sort of model will not be explored in this paper but will be pursued subsequently.

Since continuous observation is impractical or impossible in most situations, we
suppose that X(t) is observed at values tl, t2 ..... tp of t. If t is inherently discrete,
these would be all, or a selection from, the possibly finite or countable infinite set of
values of t. If t is continuous, the values tl, t2 ..... tp would represent a chosen set
of values that span the space of interest. We suppose that all subjects will be observed
at all chosen values of t, but the sequel will show how this assumption may be relaxed
to some degree.

As notation, let xO. = xi(tj), yj~ = yk(tj), and eU = ei(tj), and define the vectors,
x~ = [xil, xi2 ..... xip], w~ = [wil, wi2 ..... Wir], and e~ = [e/l, ei2 ..... eip] as
realizations of the vector-valued random variables x, w, and e, respectively. Further, let
F be a p x r matrix whosejk-th element is given by yj~,. Using the foregoing, (1) may
be re-expressed as

x = Fw + e. (2)

Now, if ~[w] -=- v, ~[ww’] ~- Y, and ~[ee’] =- ~, where ~[ ¯ ] denotes the expectation
operator, and assuming %[e] = 0 and %[we’] = 0, then

¯[x] --- I* =

and

(3)

~[xx’] ~- ~ = rYr’ + q,. (4)

If we change the assumption %[we’] = 0 to independence of w and e and assume
mutual independence for the components of e (hence, ¯ is a diagonal matrix), we are
essentially interpreting Fw to be a vector-valued true score for x (Lord & Novick,
1968). If time is continuous, it is impossible to require that ei(t) and ei(t + s) be
independent as s --~ 0, s > 0, but we shall ignore this problem created by independence
assumptions. If time is discrete, no inherent difficulty exists insofar as the assumption
of independence is concerned. The model we shall generally appeal to throughout this
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paper will assume mutual independence of the components of e, but it will become clear
in the development that some relaxation of this assumption is possible.

The model in (2) has the general factor analytic form. The differences lie in that
%[x] ~ 0 and %[w] ~ 0, although the usual factor analysis model has been expressed in
this fashion (J6reskog & S6rbom, 1985). If Y = lrlII’ and O = FII, we can express (4)
in terms of orthogonal factors as

12=OO’+W and 12-W=OO’. (5)

The matrix, O, could then be composed of the r eigenvectors of 12 - W corresponding
to the nonzero eigenvalues with rescaling by the square roots of the corresponding
eigenvalues.

If X denotes a n x p matrix whose rows represent n independent realizations of x’
and 1 denotes a column vector of ones, Tucker (1966) suggested that one could factor
analyze the sample second moment matrix I~ = (1/n)X’X to obtain an estimate 0 of 
using an Eckart-Young decomposition. Rao (1958) proposed first removing an estimate
of the average growth curve, li.’ = (1/n)l’X, and factoring :~ = 1~ - #ft’ by the method
of maximum likelihood to estimate O. In our notation, the first column of 0 would then
be ft. Although Rao was not explicit about rotation, Tucker (1966) does suggest rota-
tional criteria and recommends against simple structure in this situation.

Maximum Likelihood Estimation and Hypothesis Testing

In addition to our earlier assumptions (i.e., the representation in (2); independence
of w and e; and the independence of the components of e), joint multivariate normality
of w and e is imposed, which in turn implies multivariate normality for x. Maximum
likelihood estimation and hypothesis testing will then be possible.

Consider the following definitions of partitioned matrices:

and

(6)

Using standard theorems on partitioned matrices (Graybill, 1969), where E = 12 - Itit’,
we have

Similarly

and

I (8)

= I 1, (9)

tr M-q~l = tr X-l:~ + (ft - It)’2-1(l~ - It) (10)

Consequently, we can write, apart from an additive constant, the logarithm of the
likelihood function of X as
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In L = -5 [In IMI + tr M-11~I - 1]. (11)

Using the model provided by (3) and (4), we obtain

where

A=[0F , ~] and qb=[v Y, ~]. (13)

The logarithm of the likelihood ratio can be expressed as

In LR = -5 In ~-~ + tr M-11~I - (p + I) (14)

and -2 In LR is distributed asymptotically as a chi-square random variable if the model
in (12) and (13) allows fewer than [(p + 2)(p + 1)/2] - 1 free elements. Estimates 
parameters and a goodness-of-fit test can be obtained by analyzing 1~ as a covariance
matrix in any maximum likelihood confirmatory factor analysis program [e.g., LISREL
7 (J6reskog & S6rbom, 1989), COSAN (McDonald, 1978), or EQS (Bentler, 1989)1,
identifying some of the elements in A and q~ to insure a unique solution, and constrain-
ing the matrices as indicated in (12) and (13). Note that the fitting function, (14), 
affected by the -1 in (11) when an identified model derived from (12) and (13) charac-
terize M, although the calculation of the degrees of freedom require care; one more
degree of freedom is lost from the value given by such programs if M is treated as a
covariance matrix. We are used to regarding sample means and covariance matrices as
independent, but this is not the case for the model in (2).

Beyond identification, which requires specification of at least r2 elements in F, Y
and v, other constraints could be added. For example, the first column of F could be set

2.equal to l ; the second could correspond to tl, t2, . . . , tp ; the third to t21, t~ ..... tp,
and so on. Such a specification would force the basis curves to be simple polynomials.
We could orthogonalize the completely specified columns of F with respect to some
r × r positive definite matrix to facilitate interpretation (e.g., orthogonal polynomials).

Still other models could provide all elements of F. In such cases we may regard the
procedure proposed as a fixed empirical Bayes procedure in the sense that the moments
of w are estimated under normality assumptions and then empirical Bayes estimates of
wi, given xi, can be constructed by regression. It can be shown that %[w[x = xo] =[y - 1 + i~,xi.t - 11~] - 1 [1~,xI

t - 1 (x0 _ i~1~) + v]. This is a variation on the usual factor scores

regression procedure in which means are explicitly modeled. Hence, these procedures
lead to Bayes estimates of w if W, F, Y, and v are known and to empirical Bayes
estimates if some or all of the parameters are estimated (Maritz, 1970). Note that in this
situation, W need not be diagonal. Even if most elements off are free, the method leads
to such empirical Bayes procedures.

Since q~ denotes a diagonal matrix of error variances, one might naturally require
that xF = ~bI, where ~O is a scalar (i.e., equality of error variance over all values of t).
Such a condition can be easily imposed. We could also allow some degree of correlation
between errors by supposing W to be tri-diagonal (q~0 # 0 for i = j, i = j + 1, andj =

i + l), for example; or by imposing some other structure (e.g., block diagonal) on 
It is also possible to build an auto-regressive into the W matrix.
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Given a solution for F, estimates of the basis functions, gk(t), can be plotted at the
observed points t 1, t 2 ..... tp by choosing the appropriate elements of ~. By drawing
a horizontal line at height, ~jk, over the interval tj to t j+ 1, we would form a step function
approximation to g~(t). By connecting the heights, ~/#, with straight lines, a linear spline
(piece-wise linear) approximation to g~(t) is formed. A quadratic spline approximation
could in principle be created by fitting a quadratic function through sets of three adja-
cent values ~j-l,k, ~/jk, "~j+l,k (Schumaker, 1981). Or, using a regression approach 
splines (Smith, 1979), various spline models might be parameterized and tested 
placing appropriate constraints on F.

Various nested hypotheses about the means and second moments of w, and about
the elements of F and W can be easily tested utilizing subtractive chi-square tests, given
an overall good fit of the model. For example, if the elements of F were quadratically
specified, one could easily test for no quadratic trend by the deletion of a column of F;
or the absence of linear trend could be tested by a second column deletion. Similarly,
equality of error variance can easily be assessed or free elements in F compared to a
succession of fixed models by subtractive chi-square tests. The possibilities are, in fact,
only limited by the dimensions of x, w and e.

Cohort Sequential Design

The cohort sequential design (Schaie, 1965) furnishes a method for studying de-
velopment and change in which a long span of ages may be studied longitudinally in
relatively short time periods. Each subject is observed on each of j = 1 ..... p
occasiolas (years of measurement). Subjects are grouped according to cohorts defined
by birth year, b = 1 ..... q. Within-cell age is the difference between year of mea-
surement and year of birth, that is, age = j - b. We assume that both birth year and
occasion of measurement are naturally ordered. Cohorts may be further broken down
by demographic variables, such as gender, social class, or experimental manipulation,
yielding multiples of the foregoing scheme. The design of data collection may also yield
"corner triangles" by which we mean "new young" subjects from cohorts observed on
occasions j = 2 ..... p; j = 3 ..... p; and so on, and "old dropouts" from cohorts
observed on occasionsj = 1 ..... p - 1 ;j = 1 ..... p - 2; and so on. Simple random
sampling is assumed and longitudinal attrition will be ignored in our presentation. Also,
we will not deal with corner triangles, although they can be handled by the introduction
of dummy variates.

Confining ourselves to the simple cohort sequential design, we superscript matri-
ces and vectors with b to denote cohort. The model becomes

x(b) = lP(b)w(b) + e(b), (15)

and consequently

(16)

In practice, the foregoing is of interest only if some elements of M are equated over
cohorts, and in the most interesting special case, the elements of F are lagged, for
example,
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F(1) 

-’~11

Y31

~22

)’p2

In the balanced setup described,

F(2) 

"Y21 "Y22

~’31 ]t32

"~p2

")/p + l, l "}/p + 1,2

, and so forth. (17)

/j(b+l) y}kb), for b=l -1,j 2, and k=1,, (18)_l,k= ,...,q = ...,p, ...,r.

For this observational scheme and given ~he lagged model, if sufficient identifica-
tion conditions are imposed on the.first cohort (i.e., on (1), y(1), and v(1)), t he i
tification will carry over into other cohorts. Identification in unbalanced situations
would have to be dealt with on a case by case basis. In any event, we can supply l~I(b)

as covariance matrices to any algorithm that will carry out confirmatory factor analysis
in multiple groups along with the provision for identification conditions. If there are q
cohorts, q would have to be subtracted from the degrees of freedom as calculated by
such programs. A variety of hypotheses can be addressed via subtractive chi-square
tests, for examp)e, equality of error variances over age or over cohort or both; equality
of means for w(b) (v(b)) over cohorts or subsets of cohorts; equality of second moments
over cohorts; the column dimensionality of the F(b), and so on. Calculation of subtrac-
tive chi-square tests requires the sequential fitting of appropriately constrained models
to the data.

We have assumed that cohort differences will appear in v(b) and y(b) but not 
F(b), where the F(b)s overlap. Differences in overlapping elements of the F(b)s would
indicate a cohort by growth interaction. The essential feature of (17) and (18) is that,
referring to (1), we are postulating that

x~b)(t) = ~ w~)Yk(t -- b) + e~b)(t, 
k=l

(19)

where t denotes calendar time and b denotes calendar time of birth. This model asserts
that the basis functions characterizing development do not change in number or form
over cohorts, although the distribution of w(t0 may alter as a function of cohort effects.
Under such a constrained model, a few observations per subject within each cohort can
provide insight into the form of growth and development over a long range of ages.

Period/Practice Effects

Suppose that instead of xbb), we observe

ij = 8j ik I’kj + Otj + (20)
k=l

There is only a period or time of measurement subscript on 6 and a (i.e., no cohort
superscript). This model retains the general linear approach. Period or time of mea-
surement effects may be due to sociological factors, to practice, or to fatigue, and
different types of effects cannot be discriminated. If x<b) is personological, we might
assume that period effects are due to social change, not practice. Ifx (b) is cognitive, we
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would probably prefer to regard period effects as due to practice (or fatigue depending
on the time scale; Vinsonhaler & Meredith, 1966). Given (20);

where

and

(21)

(22)

One set of identification conditions is 81 = 1 and al = 0.
Treating 1~1(b) as covariance matrices in any program that will do simultaneous

higher order (ACOVS) factor analysis in multiple groups, we can proceed to evaluate
a variety of hypotheses (e.g., no period/practice effects, etc.) by the sequential fitting 

a series of constrained models. For a single cohort, we must have 8j = 1, since in this
case 5 can be absorbed into A; given proper identification, the elements of ot could be
variable. This topic will be taken up in the next section. We could also permit some
cohort variation in the elements of A(= (b)) and ,~(= ~(b)) c onsistent with f ull i
tification of the model; such variation would imply cohort by period/practice interac-
tion.

Relation to ANOVA and MANOVA Models

We return again to (1) and make the following suppositions: (i) r = 2; (ii) wi2 =- 1;
(iii) gl(t) ~ 1; (iv) mutual independence and constant variance ei(t ).

Using (i) through (iv), we can rewrite (1) 

Xi(t) = Wil -]- g2(t) ei (t). (24)

As usual, treating t as discrete, we are lead to a version of (2):

x = W11 + ot + e, (25)

where or’ = {92(tl), t/2(t2) ..... 92(tp)}, e is as previously defined, and 1 denotes 
column vector of ones. The additive effect vector ~t is similar to that introduced in (20)
and (21). The inclusion of ~t, correspgnding to strictly additive effects, allows us 
assume, without loss of generality, that %[W1] = 0 by absorbing Vl 1 into ~x, that is,

%[x] = Ix = at and %[(x - a)(x - a)’] = ~211’ + (26)

With the addition of normality, these are the assumptions of the usual repeated mea-
sures ANOVA frequently applied to this kind of data. The random variable, W1, be-
comes the subject random effect usually introduced in such models. Some hypotheses
about ot are frequently addressed by way of orthogonal polynomials. If r > 2,
91(t) 1, ¯ ¢q, I, or so me combination of th esehold, MANOVAalterna tives would
usually be employed since (26) cannot then be justified.

We can extend the foregoing discussion to mixed models by introducing cohort
notation from the previous section. Now, cohort might refer to a non-tested experi-
mental condition. As developed in the previous section, the notion of lag would not
usually apply although it could be utilized in some form if different subsets (cohorts) 
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subjects were measured under different subsets of t (e.g., stimuli, condition, etc.).
Generalizing (20) with 6j = 1, we have in the additive case with (b) analogous tothe
additive effect introduced in (20) and (25),

X(b) ---- wlb)l + ~t (b) + e(b). (27)

The vector, (~(b), would denote an average. This equation, along with the usual nor-
mality assumptions and the like, lead to the full panoply of mixed model ANOVAs
depending on the design. Hypotheses about the ot (b) can be evaluated by standard
methods. Again, if r > 2, gl (t) ~ l, ¯ ~ 0I, or some combination of these characterize
the situation, MANOVA techniques would be preferred. However, ANOVA and
MANOVA can only inform us about t~ (b). Every ANOVA or MANOVA repeated
measures analysis involving a univariate dependent variable can be viewed as a special
case of our general models.

As special cases, the usual ANOVA and MANOVA models can be performed with
LISRELolike analyses by utilizing an equation similar to (21) in which A = I, the last
column of A corresponds to the additive component, ot(b), and the only column of F =
1. Depending on the formulation, one might also relax the diagonality assumption for ~.
With imagination and careful attention to detail, given suitable identification, every
form of repeated measures ANOVA or MANOVA can be built up as a special case.

The genuinely interesting cases arise from the models, generalized from (27), 

x(b) = Fw(b) + ot(b) + e(b), (28)

where t~ (b) represents a common growth curve or effect within groups. Individual
differences appear in w(b) as mediated through F. When the column dimensionality of
F is one, but F ¢ 1, we have a case in which there is a location and a scale parameter
without individual differences in the location parameter and with individual differences
in scale. Individual differences in both can be treated by employing (28) in which the

column dimension of F is 2, (~(b) is set equal to zero, and one column of F is set equal
to 1. What is far more important is that individual differences can be explicitly built into
such models by appropriate definitions of the w(b) vectors as random variables and
permitting appropriate free elements in F(b), Ot(b) , V(b) , F(b), and xI)’(b). A variety of
hypotheses can be tested by suitably constraining elements of the previous matrices.
Observe that the general forms of latent curve analysis (e.g., (2), (15) and (21)) 
multiplicative alternatives to the usual additive ANOVA/MANOVA models regularly
employed in analyzing repeated measures data in the sense that subject effects (W)
multiply treatment effects (F, etc.).

Relation to Simplex Models

Wiener and Markov simplex models (JOreskog, 1970; J6reskog & SOrbom, 1985)
are discussed next. If one examines Table 2 in JSreskog (p. 122), we see that every case
discussed can be treated as a special case of the cohort formulation with period/practice
effects. Let the p x p matrix

1 0""0 0
11.-.00

F = ¯ .... , (29)

1 1... 1 0
1 1... 1 1
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then

We further require that both Y - vu’ and ̄  be diagonal. With suitable modifications
and restrictions leading to identification and over-identification, the foregoing charac-
terizes all models proposed by JOreskog in the single cohort case. Multiple cohorts can
be dealt with by superscripting matrices and vectors as in (21). A variety of hypotheses
about v(b~ and y~b~, and the like, can then be addressed by the sequential,fitting of
constrained models. A problem arises in connection with the requirement that the p
elements of w be mutually independent (uncorrelated); that is, y~b~ v~b~v~b~, = diag,
which cannot be readily formulated in the format we have employed. It can, however,
be implemented by utilizing the full power of LISREL-Iike programs. Our point is not
to suggest how to carry out simplex type analysis by way of latent curve analysis.
Rather we wish to point out that when the random vector w is thought of as comprising
mutually independent elements, and F is given by (29), the model for the data, 
random vectors, can be expressed with fully generality, disregarding identification, as

Equation (31) is a generalization of (20) leading to an equation like (21). In other 
simplex models are generalizations of the models provided by (1) and (20). The 
issues are the independence of the components of ~, and the square form of F given in
(29), which imply independent increments, versus reduced dimension curve fitting with-
out independent increments when r is substantially less than p. In practice, it may be
difficult to distinguish between such models when the number of free parameters to be
estimated are similar (Rogosa & Willett, 1985b). It should be noted that, as developed,
simplex models can not easily handle period/practice effects which, as we have shown,
can be treated linearly in the latent curve framework extended to the cohort sequential
design. Further work on simplex models in this connection is required.

A Simple Example

This example employs artificial data1 which were analyzed blind, that is, without
knowledge of how the data were constructed or knowledge of the values of tj other than
their rank order. These data consist of 75 curves each observed at 14 points in time. The
lower triangular moment matrix is presented in Table 1; the last row contains the
means. LISREL 7 (J6reskog & S6rbom, 1989) was used to perform the analysis.

A simple one curve model, xi(tj) = wi.q(t j) q- ei(tj), with ~r2e,(tj) = q~and O’e.(tj)ei(tj,)
2= 0 for tj ~ tj, was tested first. The analysis yielded X (103) = ~057.38. Parent’hetically,

the root mean square residual is only 1.45 and the Q-plot of normalized residuals looks
reasonable.

A simple two curve model is xi(tj) = Wil + wi2gl2(tj) + j) withtr~(t j) = ~b and
Crei(tj)ei(tj,) = 0 for tj ~ tj,. In this model, the first column of F from (2) consists of 
vector of ones. The analysis yielded a X2 (101) = 90.24, p = .770. Hence, we believe that
this model best fits the data. The parameter estimates are (~l, ~’2) = (10.111, 4.127),

(&2w,, &2w2, &w, w2) = (9.828, 0.726, -2.616), tSwl w~ = -.979, and ~ =. 160; the estimated
values for 92(tj) (i.e., ~/jz) are plotted in Figure 

The authors wish to thank David Rogosa and John Willett for furnishing us these data.
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TABLE 1

The augmented moment matrix of the simulated data

112.1288
151.0116 208.0034
182.0271 252.7919 308.9195
204.8107 288.0187 350.2101 398.0287
225.2741 315.7227 387.1415 440.1612 487.3850
241.0956 338.6745 415.7779 473.0214 523.8347
253.4796 358.5985 438.0767 498.5768 552.2259
262.4238 369.8594 454.6013 517.6537 573.4898
270.3683 381.3613 468.9517 534.0884 591.7720
278.8108 390.6987 480.5759 547.4397 608.6458
281.1356 397.0443 488.5258 556.8130 616.7899
286.6480 404.9506 498.2938 567.7779 629.1942
815.1647
288.0999 407.1844 501.2264 571.1909 833.0530
820.1553 825.4742
291.0291 411.3030 508.1871 578.8893 639.3093
828.2384 833.4532 841.8151
10.1084 14.2339 17.4899 19.9101 22.0555
28.5329 28.7100 28.9928 1.0000

563.4994
594.0188 626.5312
616.9781 850.7060 676.1360
636.7198 671.5298 697.7038 720.2900
652.7802 688.4868 715.3244 738.3818 757.2411
663.7106 700.0468 727.3935 750.8594 789.8849 783.1000
877.1243 714.2042 742.1564 788.0935 785.4807 798.8190

881.3083718.8778 748.7500 770.8830 790.4473 803.7990

688.0465 725.7664 754.1241 778.5012 798.2249 811,7502

23.7240 25.0193 25.9902 28.8245 27.5027 27.9859

The first two values are set equal to zero and one, respectively, for identification.
The above model with bw, w2 = -1 was rejected by X2(102) = 1032.64.

Assuming equal time intervals, we did attempt to fit a linear model for 92(tj) and a
quadratic model for 93(tj). Orthogonal polynomials were used for 92(tj) and 93(tj);
again, equal error variance was assumed. Both the linear and quadratic models were
clearly rejected, that is, X2(113) = 3219.49 and X2(109) = 1048.06, respectively.

G

o
w

h

4 5 6 7 8 9 3.0 3.3. 3.11 3.3 3.4

FIGURE 1.
The Growth Curve, 92(tj), for the Artificial Data.
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If one assumes that t 1 = a, t 2 = a + b, t 3 = a + 2b ..... t14 = a + 13b, where
a and b are any numbers (b > 0), the plot in Figure 1 resembles a negatively accelerated
exponential growth curve which we will refer to as a negative exponential curve.
Further, if the individual curves are negative exponential, an average curve can be
negative exponential if and only if the rate parameter does not vary over individuals.
The intercept and asymptote may vary. This suggests that the data were generated by
Xi(t) = Vii + Vt*’2[1 -- exp (--fit)] ei (t), or, equivalently, by xi( t) = / )i 2 - [ /) i2 - v ii

exp (-/3t)] ei(t). Toinvestigate this possibility fur ther, we note that giv en equally
spaced tj, we can scale t (and/3) so that tL - tj_ 1 = 1. With the identification restrictions
employed, 02(tj) = 5’j2 = [1 - exp (-/3[j - 1])]/[1 - exp (-/~)], where /~ is 
unknown. It can be shown that In (~,jx - ~/j-l,2) ~ -/~[J - 2] forj = 3, 4 ..... 14. A
plot of the logarithm of the differences against the values j - 2 is nearly linear. A least
squares line through the origin has slope -.235, hence/~ = .235, and the coefficient of
congruence (correlation with zero intercept) is -.98. Rewriting, xij = vi2 - [vi2 - vii ]
exp (-/3It0 + J’]) eij interms of ouridentification yiel ds

xi~ = v,~ - [va - vi~] [I - e-O][e-¢][e -¢’°] ~ - 1 - e-¢ + eo

= Ui2 -- [Ui2 -- Vil]kokl + [ui2 - Vil]koYj2 + eij,

where k0 = [1 - exp (-/3)] exp (-/3) (-~3to), k1 =[1 - exp(- /3)] -1, Yj2 = [1 - ex
(-/3[j - 1])]/[1 - exp (-/3)], and to is an additive or shift constant. Equating this curve
to the latent curve, yields

X(i = Vt2 -- [vt2kl - Vil]kokl + [vt2 - Vil]koYj2 + eij = Wil + wt2yj’2 q- eij,

where wil = vi2 - [vi2 - Vil]kokl and wi2 = [/)i2k2 - Vil]ko. Or

I - kokl
Uil = Wil -- wi2 -- and ui2 = Wil + wi2k1.ko

We note that in the general expression, xi(t) = Yi + Zi[ 1 -- exp (-/30] + el(t), the
value for the origin for t is indeterminate. Arbitrarily, we define Pv, v2 = 0 (alternatively,
we could have set to = 0 or -1), and conclude that the data were generated by the
following negative exponential function,

X~/ = /)12 -- [/)i2 -- /)il] exp (-/3[t0 +j]) + e//,

with constant rate parameter, /~ = .235 and additive constant, ~0 = -6 (rounded
to integer time). The intercept, vi~, and the asymptote, viz, may vary with the obser-
vations, that is, individual differences parameters; their means and variances are, re-
spectively, (/2v,,/2v2) = (23.729, 29.814) and (&v2,, &v22) = (.474, 1.412). The errors 
measurement have mean, /2E = 0, and variance, &e2 = . 160. The assumption of nor-
mality for these variates (Vt, V2, E) is consistent with the normality assumptions
placed on the manifest variables.

The data were actually generated by a negative exponential function (J. Willett,
personal communication, May 25, 1988) with constant rate parameter, /3 = .23 and
integer time points, j, ranging from -6 to 7. The intercept, V1 - N(25, .437) and the
asymptote, V2 - N(30, 1.5); their correlation, Or, v2 = 0. Errors of measurement, E -
N(0,. 15). By comparison, we conclude that the latent curve analysis recovered the data
structure in this situation remarkably well.
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TABLE 2

The cohort sequential design of the Nesselrosde-Baltes data

Cohort

Year of measurement

~
1970 1971 1972

1 7 8 9
8 9 10
9 10 11

10 11 12

A Cohort Sequential Example

To provide a nonartificial example, we employ data2 from Nesselroade and Baltes
(1974), involving the raw scale scores of the Number Series subtest of the Primary
Mental Abilities Test (Thurstone & Thurstone, 1962). For further information the
reader can refer to both publications. The data collection scheme can be described by
the following table, in which the elements correspond to grade in school.

Defining Cohort 1.through 4 as females, and Cohort 5 through 8 as males, we deal
with 8 cohorts by treating the two genders separately, replicating Table 2 for each
gender.

The eight M matrices are presented in Table 3 with females above the diagonal and
males below.

The last rows and columns of the matrices in Table 3 contain the means for each
grade-by-gender subset of data within cohorts. Also, note that each subject is observed
on each of three occasions (1970, 1971, 1972). These data has been edited by subjective
elimination of extreme outliers, and all analyses reported were performed with LISREL
7 (Jrreskog & S6rbom, 1989), employing LISREL’s ability to handle multiple groups
o (b)( ur 8 cohorts) as well as the options for constraining parameters (e.g., those in F 

The first model is described by (21). Since ~(b) is assumed to be q~I, we 
requiring equivalence of error of measurement over both occasions and cohorts. With
81 = 1 and oq -- 0, we consider lag

F(l)=F(5)= 3’2 , F(2)=F(6)= 3"3 , F(3)=F(7)= 3"/4 ,
T3 3’4 T5

and

1"(4) = 1.‘(8) = T5 . (32)
3’6

Gender-by-cohort differences are presumed to be represented in v(t’) and Y(6), that is,
no interactions are assumed. This model yields X2(46) = 57.35, p = . 12. We call this
Model 1 for comparative purposes. Given a reasonable fit of the overall model, in
Model 2 we test the hypothesis of no growth by requiring F(~) = 1. The resulting
X2(5 I) = 73.88, p = .02. The subtractive or restrictive chi-square comparing Model 2 
1 is X~2(5) = 16.53, p = .005, and clearly model 2 is rejected.

2 The authors wish to thank John Nesselroade for permitting us to use these data.
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TABLE 3

The augmented moment matrices of Number Series scale

Cohort, 1 females (N
34.1 36.5 43.4

37.0 45.1 51.2
Cohort 5 41.4 54.0 65.1

males 48.8 59.7 73.5
(N = 98) 5.6 6.7 8.0 1.0

Cohort 3 females (N
50.9 55.1 58.1

53.8 67.1 69.0
Cohort ? 57.4 70.4 76.3

males 61.1 70.6 78.1
(N = 96) 6.7 7.8 8.3 1.0

116)
5.4
6.2
7.5 Cohort 6
1.0 males

(N = 93)
117)
6.5
7.7
8.2 Cohort 8
1.0 males

= 79)

Cohort 2 females (N ~ I2I)
43.9 48.9 82.9 6.0

46.7 63.3 65.5 7.5
51.4 65.3 74.1 8.0
56.7 69.3 79.9 1.0
6.2 7.4 8.2 1.0

Cohort 4 females (N ---- 62)
51.0 54.6 61.2 6.7

58.0 63.9 68.6 7.5
66.7 87.2 78.9 8.3
71.0 88.4 97.2 1.0
7.0 8.7 9.3 1.0

In model 3, we revert to the form of model 1, but require A = I and obtain
X2(48) -- 60.24, p -- .11. The subtractive chi-square for comparing model 3 to 1 
XR2(2) = 2.89, p -- .24. Model 4 is conceptually similar to Model 3, although we now
assume ot = 0. This requires the period/practice effects to be multiplicative, whereas in
Model 3 they were additive. The fit of this model is X2(48) = 58.51, p = .14. The
subtractive chi-square for comparing Model 4 to 1 is XR2(2) = 1.16, p = .56. In Model
5, we require A = I and (~ = 0, no period/practice effects. This yields X2(50) = 67.02,
p = .05. The subtractive chi-square which compares Model 5 to Model 1 is XR2(4) 
9.67, p = .05, and we conclude that some period/practice effect is worthy of inclusion
although it may not matter whether this effect is regarded as multiplicative in A or
additive in t~. In subsequent analysis, we set t~ -- 0 (or assume Model 4).

The next parameterization, Model 6, requires v(b) to be equal over grade cohort
within gender; X2(54) = 60.99, p = .24. The subtractive chi-square of Model 6 versus
Model 4 is XR2(6) ---- 2.48, p = .87, suggesting that there are no cohort differences in the
factor means within gender. In Model 7, we test for equality of factor means for both
cohorts and gender; X2(55) = 63.93, p = .19. The subtractive chi-square between
Models 7 and 6 is XR2(1) -- 2.94, p = .09. Finally, we test for no cohort and gender
differences in factor means and variances, Model 8; X2(62) -- 71.33, p = .20. The Model
8 versus 7 shbtractive chi-square is XR2(7) = 7.40, p = .39. Implementing Model 
equates the matrices whose free elements are y(b) and v(b) in (21) over cohorts.

We conclude: (a) there is growth; (b) period/practice effects cannot be ignored; 
average errors of measurement do not vary over gender and cohort; and (d) there are
no gender or cohort differences or interactions in development with respect to the
Number Series test.

All numerical estimates of parameters presented are taken from the solution for
Model 8. Since the variation in parameter estimates is minimal (and nonsignificant),
these are not presented for the other models. The multiplicative practice effects, {Sj},
are equal to 1.11 from Occasion 1 to 2, 1.16 from Occasion 1 to 3, and consequently,
1.05 from Occasion 2 to 3. The values of the true growth curve at the Points (Grades)
7 through 12 are represented in Figure 2.

These values were obtained from the elements of the r(b) matrices as described in
(32); the first value is set equal to one for identification purposes. A linear spline
approximation can be obtained by plotting the points and connecting them with straight
line segments.

Since g(t) is monotone as estimated, the individual growth curves when multiplied
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by W would appear to be a fan over Grades 7 to 12, that is, the growth curves do not
cross. Such a result is not a necessary consequence if either the curve is not monotone
or more than one basis curve is needed, or both. The mean of the sole individual
differences variable, W, is 5.46 and its standard deviation is 1.71. For this kind of data,
negative values of W would be problematic. Given the normality assumptions made,
and our estimates, we find that the probability that W - 0 is approximately .0007. Using
the error variance, 3.38, and variance estimate multiplied by the squares of the appro-
priate elements in the growth curve, we can calculate the reliability for each grade.
Notice 9(0 is monotonic and the true variance increases over grade; consequently, the
reliabilities increase. The reliabilities estimates based on this procedure are contained
in Figure 3.

We believe this is a much better way of estimating reliabilities than those conven-
tionally used, and discuss this in a subsequent paper. Thurstone and Thurstone (1962)
combined the Number Series test with other measures to get a reasoning ability test.
This suggests that the Number Series test is not a very reliable measure when used
alone. Both the median test-retest reliability, which is .625, and the reliabilities in
Figure 3 concur on this point.
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