Exploratory Common Factor
Analysis

2.1. THE PARAMETERS OF THE COMMON FACTOR
MODEL

Let us first bring together the central notions of Section 1.5,

In Section 1.5 we saw that the basic assumptions of the common factor model
can be expressed in two distinet but equivalent ways. We can say that there exists
a number of unobserved variables (common factors) that explain our observed
correlations, in the sense that when these are partialled out, the partial correla-
tions of our observed variables all become zero. Alternatively, we can say that
each of our observed variables can be expressed as the sum of a (common) part
that is its regression on a number of unobserved variables (common factors) and
a residual about that regression and that the residuals are uncorrelated.

For the simple case where we suppose that the common factors are uncorre-
lated, the first of these descriptions is expressed mathematically in the statement

I =D + fpfea + + Limfum a%h_h
I=1lL....0

k=1,....n (2.1.1)

where r; is the correlation (in the population) between the jth and kth 4m1u_.a_.a.
and f, is the regression weight of the jth variable on the pth factor (or its
correlation with the pth fuctor, because these are the same when the factors are
uncorrelated), The second of these descriptions is expressed in the statement that
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where y, is the jth observed variable; x, is the pth common factor, p = 1, . . .,
m; e; is the residual of y, about its regression on the factors (the unique factor);
and £, is, again, the regression weight of y, on x,, (the common factor loading—
or coefficient—of variable j on factor p), together with the statement that the
residuals are uncorrelated.

The statement in (2.1.1) is the testable numerical implication of the common
factor hypothesis, as shown in Section 1.5, and is sometimes described as the
Sfundamental theorem of factor analysis. The statement in (2.1.2) is the statistical
common factor model itself,

The parameters of the model that we would want to estimate from a given
sample are the nm factor loadings (v~f weights) £, and the n residual variances
(variances of the residuals /), which are otherwise known as unique variances
and which will be denoted by «f. If our hypothesis specifies only the number m
of common factors, this hypothesis is not sufficiently definite to idenrify the
numbers in the (n X m) matrix of factor loadings (i.e., in the factor pattern). We
say that these parameters are not identified. For example, in Tables 1.5.3 and
1.5.4, we had two sets of numbers, looking quite unlike each other so to speak,
that give on computation by way of (2,1.1) exactly the same correlations. Given
any one set of factor loadings that yield a set of correlations, the mathematician
knows how to generate from these given numbers all the other sets of numbers
that give the same correlations. These are transformations of the given numbers,
and in factor analysis the process of transforming a given set of factor loadings
into an alternative, equivalent set (“‘equivalent’” in yielding the same correla-
tions) is known as roration, This nomenclature is correct for uncorrelated factors
and incorrect for correlated factors. In what we call exploratory factor analysis,
the user is unwilling {and just conceivably unable) to specify any more detail, so
the mathematician arranges a two-step calculation for the user. In the first step,
one set of fitted (estimated) factor loadings is caleulated from the sample data
supplied, perhaps a set that 15 mathematically convenient. This will give an
unrotated factor partern and is usually ignored by the user when it is supplied in
the printed output. In the second step, the computer program performs arithmetic
on the unrotated factor pattern, to obtain a *‘rotated"’ factor pattern in which the
coefficients approximate simple structure (Section 2.4) while equally fitting the
data.

In exploratory factor analysis, as we saw, the testable hypothesis is a hypoth-
esis specifying the number of common factors. Using any rational best-fitting
procedure for fitting the model to a sample, it seems obvious that the hypotheses
that there are 1, 2, . . . , n common factors form a sequence in which more
factors must give a better fit. (The hypothesis that there are zero factors is the
same as the hypothesis, Section 1.4, that the variables are mutually uncorre-
lated.) For a sufficiently large number of factors, the fit to any sample must be
perfect, and the model would not constrain the data, and so be falsifiable. In
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exploratory work, then, we follow Thurstone and regard the best number of
common factors as the smallest number that will account for the correlations
(i.c., the smallest number with which the data are consistent). The weaknesses of
this approach are pointed out in Chapter 3.

We might expect that all the relevant information for the estimation of the
parameters (the factor loadings and uniquenesses) of the common factor model
from a sample of N subjects is contained in the sample correlation matrix and that
the sample means and standard deviations are irrelevant (not to mention the
scores of individual subjects). Broadly, this is true, though it is a very technical
matter to prove it true. We shall describe two methods of obtaining *‘best"
estimates; the method of maximum likelihood (ML) and the method of least
squares (LS). The mathematician is able to show that ML estimates are, effec-
tively, independent of the scale of the variables, so there is no important informa-
tion in the sample standard deviations (or means). In the case of LS estimates,
this is not actually true, but if we choose to use the sample correlations, we are
minimizing the measure of fit (actually, of misfit), in the scale of (or, in technical
language, in the metric of) the observed variables as standardized in the sample.
This is rational behavior, so the reader is encouraged to remember from this
paragraph the main point that it is technically all right to submit sample correla-
tion matrices (rather than sample covariances) to an exploratory factor-analysis
program.

2.2. ESTIMATION

Suppose now that we have drawn N subjects independently from a population,
measured the n values of the variables under study on each subject, and com-
puted the (n % n) matrix of sample correlations. It is necessary to distinguish
three sets of numbers at this point and to adopt distinguishing notation for them.
We shall write ry, for the (unknown) correlation in the population and, corre-
spondingly, f,,, u} for the population factor loadings and unique variances. We
shall write 7, f,,, and 47 for our best estimates of these quantities obtained from
our sample, and to avoid confusion we shall write a;, for the sample correlation
coefficient (i.e., the correlation between the measures of variable j and the
measutes of variable k obtained from our sample). (It would be nice to dis-
tinguish a fourth set of numbers—the possible values of the estimates out of
which we are going to choose the best set—but we shall not do s0.)

In least squares (LS) estimation we follow a widely used mathematical notion
of **best’ in fitting one set of quantities to another. We ask the mathematician to
develop some computer arithmetic that will give us estimates ._wn and @} that are
better than any other numbers, in the sense that the quantity
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(and 7, = 1) is smaller than any other quantity we can get by choosing other
values of f,,. The expression (2.2.1) is a sum of squares and so must always be
greater than or equal to zero. It could be zero only if every estimated correlation
fyi was exactly the same as the sample correlation ay. In that case the hypothesis
would not be restrictive, and the fit would be perfect, With a small enough
number of factors, we expect the fit to be imperfect in the sample, but we hope
that the *‘residual correlations,’" the discrepancies between the sample a;, and
fittad 7, will be small enough to allow the belief that the model is true of the
population from which the sample was drawn. Table 2.2.1 gives a small example
of estimates fitted by least squares.

The reader can try, with the aid of a calculator, varying the values of Jyp or u}
slightly, in order to discover that any other values we choose will make the
quantity Q larger and the fit worse. After the computer supplies us with a set of
LS best-fitting numbers f,,, we can ask it to transform them (Section 2.4) to give
a new set that will be equally well fitting (with the same value of Q and the same
matrix of discrepancies a;, — f,,) but will also approximate simple structure,

TABLE 2.2.)

Correlation Matrix = 4 Factor Loadings (F)

1.000 0,700 0.600 0.500 -0.842

0.700 1.000 0.600 0.500 aw -0.842

0.600 0.600 1.000 0.400 {2 |20:707

0.500 0.500 0.400 1.000 73 |-0.587

PR’ Residual Matrix - 4 - FF’

0,709 0,709 0.595 0.494 0.291 -0.009 0.
0.709 0.709 0.595 0.494 -0.009 0.291 o.m%w m”umm
0.595 0,595 0.499 0.415 0.005 0.005 0.501 -0.015
0.494 0.494 0.415 0,345 0.006 0.006 -0.015 0.655

Unique Variances: wy = 0.291085
uy = 0.291085
uy = 0.500221
wy = 0.654269

@ = 0.00083152 (Where @ = sum of squares of the off-
diagonal elements of the residual matrix)




54 2. EXPLORATORY COMMON FACTOR ANALYSIS

The method of least squares has the advantage that we develop a sound and
simple intuition for the way in which **fit"" is measured and made optimal, (It is
actually better to speak of Q as measuring **misfit,"* or badness-of-fit, which we
aim to minimize.) The method of least squares has the disadvantage, however,
that with or without the stringent assumption of normality of the distribution of
the population, it does not give us a test of significance of the 3?52;.._

The method of maximum likelihood is a very widely used method of estima-
tion, Under normality assumptions, in many kinds of problem it gives the same
mathematical expressions for estimates as the method of least squares but not in
the cases considered in this book. The basic idea of the method is extremely
simple, but mathematically its application here is too complicated to describe,
even to the point of offering an expression like (2.2, 1), without introducing some
concepts from matrix algebra that are preferably omitted from an elementary
book. The basic principle, quite simply, is that we ask the mathematician to give
us arithmetic procedures for getting values of the population parameters that
would make the probability of occurrence of our sample from that vovc_.u:o.: as
large as possible. (Pedants would insist that this statement assumes distributions
that are not mathematically continuous. They would be right, but it doesn’t
matter.) When we calculate the probability of our sample as a function of various
possible values of the population parameters, we refer to it as the likelihood, and
we choose values to maximize the likelihood of the sample.

In applying the method of maximum likelihood to models for multivariate
data, assuming normality, the mathematician finds it convenient to define a
function of the likelihood that is also an algebraic measure of fit of the param-
eters (or, rather, of “‘misfit'"). That is, it is positive and increases with an
increase of the discrepancies between ay and £, and is zero only if the fit is
perfect in the sample. This quantity is the natural logarithm of the ratio of the

nstead of minimizing the ordinary least-squares function (2.2.1), we can minimize a weighted
or generalized least-squares function

L) L] " n
Qg = M M M M Wikt G — Fal @y = Fin)
J=1 k=1 =l m=|
with weights wyy, chosen to compensate for the variances and covariances of the residual
covariances. A reasonable choice is
Wikim = Bpdim
where by is the (j, k)th element of the inverse of the sample correlation matrix and approximates the

expected value of the covariance of ay and a;,, in repeated sampling. Corresponding to (2.6.2), this
generalized least-squares function can be written as

Q* = Tr [[A=MA = FF' = UH)?)

The advantuge of the generalized least-squares function over the ordinary least-squares function is
that it yields a chi-square test of fit in large samples, just as the likelihood function docs,

—
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likelihood of our data under the restrictive hypothesis to the likelihood of our
data when we put no restrictions on the nature of the population from which it
comes. It reaches a minimum when the likelihood is a maximum, Because of a
very general result in the mathematical theory of statistics, we can choose to
scale this measure of misfit so that its minimum is distributed as chi-square if the
hypothesis of m factors is true, and if the sample size is large enough. We shall
therefore assume that a computer program gives us a quantity that we shall
denote by A and just call the likelihood ratio criterion (LRC), (1) This quantity is
a distribution-free measure of *‘misfit'" of the estimated parameters to the sample
correlations, which has been minimized by the computer program. Indeed, it is a
direct measure of the departure of the correlation matrix of the residuals from an
identity matrix and in this sense measures misfit of the model to the sample data.
(2) It is the log-likelihood ratio for testing the hypothesis of m factors against the
alternative “*hypothesis’* that the population is not constrained in any way. (3) It
is distributed like chi-square, assuming normality, if the sample size is large
enough, with degrees of freedom given by

df = H(n = m)® = (n + m)}. (2.2.3)

We can use ML estimates whether or not we assume normality. [f we assume
normality, we can also compare the LRC with tabulated chi-square for the given
degrees of freedom. If the LRC does not exceed the chi-square value for, say, the
5% level, we have no reason to reject the postulated number of factors in favor of
a larger number, If we reject the hypothesis, we can go on to test the fit with a
larger number of factors,

Most social scientists have been nurtured in the classical Neyman—Pearson
tradition for the testing of a statistical hypothesis. In this tradition we usually set
up a restrictive hypothesis that we hope to reject in favor of an alternative, less
restrictive hypothesis that is really our preferred outcome of the study. For
example, we seek to reject a hypothesis that the means of a control group and an
experimental group are equal in order to affirm that they are different and, the
important outcome, that the treatment had a *‘significant’* effect. In contrast, in
factor analysis and in almost all models of any complexity for multivariate data,
our interpretation of a notion of parsimony or, to put it more straightforwardly,
the need to keep our account of the data as simple as possible gives us a desire to
affirm the most restrictive hypothesis that is tenable. (It should preferably be
substantively reasonable and interpretable as well as statistically tenable.) How-
ever, failure to reject a restrictive hypothesis usually means only that we do not
have a large enough sample to reject it.

In exploratory factor analysis, the user may not have a hypothesis as to the
number of factors. Indeed, to develop such a hypothesis genuinely and not just
choose an arbitrary number, the user would need to classify the tests into sets
(possibly overlapping) on substantive grounds and hypothesize a number of
factors equal to the number of sets. That is, logically we cannot postulate how
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many factors we have without postulating what they are. In that case our hypoth-
esis is detailed enough to permit the immediate application of the confirmatory
methods described in Chapter 3 and thus avoid exploratory analysis altogether,

Suppose, nevertheless, that the user insists that nothing is known about the
tests that are to be factor analyzed and that the data are to be used to determine
“how many factors to extract, "’ (The notion of extracting factors is analogous to
extracting the roots of a polynomial and has nothing to do with dentistry.) If we
start with an arbitrary small number and fit m, m + 1, m + 2, . . . common
factors until the chi-square is not significant at our favorite conventional level
(5% or 1% presumably), we shall not have much idea of the probability to be
associated with the entire nested sequence of statistical decisions. It is, however,
known that the probability that we would thereby decide to fit more than the true
number of factors is less than our chosen significance level.

We can be very sure that as we increase our sample size, the number of factors
needed to reach a nonsignificant chi-square will increase. One might claim that
all common factor hypotheses are false, because all restrictive statistical hypoth-
eses are false, and they will be proved false by the use of a sufficiently large
sample size. It seems not unreasonable to recommend that we use the chi-square
test one-sidedly. It would be a worse error to retain and interpret factors that are
“not real,"” that is, factors that are random error masquerading as genuine
structure in the data, than to omit some not-very-detectable factors that are
“‘real.”” More precisely, we should not retain m factors if m — 1 factors do not
yield a significant chi-square, for we shall be pretending that random error is
genuine structure. On the other hand, it would be rational 1o ignore a signilicant
chi-square that seems to be requiring at least s + | factors, if the (m + 1)st
factor were to supply little to the fit, or to the meaning of the analysis. That is,
the chi-square test, combined with the efficiency of maximum likelihood estima-
tion, serves primarily as a protection against overfactoring in relatively small
samples, a tendency to which traditional approximate methods of factor analysis
are prone (see Section 2.3),

From one point of view, inspection of the entire residual covariance matrix
gives us more useful information about the fit of the model to the data than we
obtain from the chi-square test,

Clearly, if the residual covariances of distinet variables are all sufficiently
small, then m factors have accounted sufficiently well for the correlations of the
varigbles. Accounting for correlations is the purpose of the model, and the
smallness of the residual covariances is by definition the measure of its success in
doing so. It should be noted, by the way, that some computer programs still in
use for exploratory factor analysis do not print out any information about the
residual covariances. Such programs cannot be recommended, as it is impossible
to tell from them whether the analysis fits the data well, badly, or not at all. The
trouble with direct inspection of residual covariances as a basis for determining
whether or not the model fits the data well enough is of course lack of the
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comforting sense of objectivity that comes from choosing a statistical signifi-
cance level and consistently applying it. Acknowledging, with a deliberately
mixed metaphor, that rules of thumb should be taken with a grain of salt, we
might get a rough guide by combining the fact that a common factor seems to
need at least three tests with loadings above .3 to define it adequately (see
Section 2.3) with the elementary arithmetic result that .3 % .3 = .09, to find a
rule that if all residual covariances are less than .1, we are unlikely to be able to
fit a further common factor that would be well defined and possibly interpretable.
It is also possible to examine the largest residual covariances for evidence that
they cluster, indicating the constitution of the additional factor that might be
fitted if the chi-square is significant and some residual covariances are too large.

Technically, the mathematics and the computer arithmetic involved in mini-
mizing either the function Q for LS estimates or the LRC for ML estimates is
quite complex, and different procedures of varying efficiency have been recom-
mended and programmed. The important fact remains, however, that programs
do exist yielding LS and ML estimates, and in the latter case we also have a chi-
square test of the hypothesis. The LS and ML solutions will usually be slightly
different as they are based on different measures of fit. They can disugree widely
in some cases, as when one gives a Heywood case while the other does not (see
Section 2.3). But we seldom find a difference that matters.

Table 2.2.2 gives a sample correlation matrix obtained by selection from a
study by Thurstone, with sample size N = 213, We know from previous work
that the variables would be classified into three measures of verbal ability, V1,
V2, and V3, say; three measures of word fluency, W1, W2, and W3; and three
measures of reasoning ability, R1, R2, and R3, say. But we perform an explora-
tory lactor analysis to see what it will tell us. The ML estimation procedure under
the hypothesis of three common factors gives us an estimated factor pattern as
shown in Table 2.2.3, "“unrotated,”” meaning, not yet transformed to meet the

TABLE 2.2.2

Correlation Macrix

1.000 .B28 .776 .439 .432 447 .447 541 .380
.B28 1.000 .779 .493 .464 .489 .432 ,537 .358
776 779 1.000 460 .425 443 (401 534 359
<439 (493 .460 1.000 .674 .590 .38l .350 .424
J432 (464 425 (674 1.000 .541 .402 367 446
A47 489 443,590 ,541 1.000 .2B8 ,320 .325
L4467 432 401 .381 4020 ,288 1.000 .555 598
.541 ,537 .534 .350 .367 ,320 .555 1.000 .452
| <380 .358 359 .424 446 .325 .598 .452 1.000

CODE: sontences = vocabulary
sentence completion = first letters
four-letter words = guffices
letter series = pedigrees

letter grouping

e A= ]
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TABLE 2.2.3
Unrotated
Factor Pattern (ML) Communality Uniqueness
(867 -.269 .021] .825 .175
.881 =-.237 ~-.057 835 .165
.826 =-,222 -=.031 W 732 .268
657  .445 =-.320 .732 .268
630 .429 -.219 628 .372
- 597 237 =.,290 .496 .504
.603 L320 .502 .718 .282
.646 .053 .291 .504 .496
Lmao .381 .uoml «52%7 473

requirement of approximating to simple structure. The coefficients in this matrix
{the factor loadings) are both the regression weights of the variables on the
factors and their correlations with the factors. The value of the LRC is 2.916 on

df = H{O - 2 - (O + 3)} =12

which from the table of chi-square has a probability of being exceeded that is
equal 0 .995, so we do not reject the hypothesis of three factors. The matrix in
Table 2.2.4 contains the residual covariance matrix, commonly abbreviated to
residual matrix. As mentioned already, it should be printed out by a good factor-
analysis program, for we can use it to see if the discrepancies between the model

TABLE 2.2.h
Residual Matrix

175 .00l 001 ~.005 .006 =.001 =-.000 =.011 .o&ﬂl
.001 «165 .003 001 -.002 .003 .006 =.003 =-.010
.001 ~-.003 .268 .006 =-.006 =-.006 ~,010 .022 007
-.005 .00l L0086 .268 =~.001 .00 .004 =-.004 -.004

.006 =-.,002 -,006 ~.001 372 .000 =-,005 .002 .008
-.001 .003 ~.006 =-.000 .000 .504 ~,002 .007  ~.000
-.000 .006 =~-.010 .004 =.005 =-.002 .282 .003 =.000

-.011 ~.003 022 ~.004 002 007 .003 .496 =-.004
|_-007 =.010 .007 =-.004 .008 =-.000 =~.000 ~.004 .umml
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and the data are small and evenly distributed or if there is an arrangement of the
worst discrepancies that suggests an additional factor that we have otherwise
failed to detect, For example, Table 2.2.5 shows a reanalysis of this sample with
two factors hypothesized, and apart from the fact that the chi-square is signifi-
cant, we can also see a definite bunching of the worst discrepancies in the
residual matrix of Table 2.2.5(b) in the last block of variables. On the other
hand, the residuals from three factors in Table 2.2.4 show, apart from the
nonsignificant chi-square, that a fourth factor would certainly be ill-defined and
unnecessary, because none is larger than ,022. It is traditional in common factor
analysis to present also the estimates of the communalities of the variables, the
row sums of squares of the loadings, which are best thought of as the squared
multiple correlation of each variable with all the common factors. These are also
given in Table 2.2.3. In a modern analysis we tend to emphasize instcad the
unique variance (residual variance) of each variable, It is the proportion of the
variance of each variable that is not explained by the factors, This is a piece of
information that is complementary, equivalent information to the squared multi-
ple correlations, and it lacks the ambiguities that the term communality has
picked up over 40 years or so, For completeness, we also present the rotated
factor pattern, using an algorithm called VARIMAX (see Section 2.4) in Table
2.2.6. The important point to note about this now is that the fit after "*rotation™
to a new set of factor loadings is just as good (or poor) as before *‘rotation."
Table 2.2.7(a) gives the (unrotated) LS estimate of the common factor pattern,
Table 2.2.7(b) gives the (varimax) rotated pattern and Table 2.2.7(c) gives the
resulting residual matrix.

Because of the simplicity of the example chosen, the interpretive phase of our
work is very simple. We declare, on the basis of the factor pattern in Table
2.2.6(a), that the first three variables have high correlations with (and are **heav-
ily" weighted with) the first factor, the second three with the second factor, and
the last three with the third factor. We then take this to mean that the factors are

TABLE 2.2.5

(a) Two-Factor

Pattern (ML) (b) Two-Factor Residual
883 .236] ﬁuemm .00l =-.005 =-.005 .007 .ODO ,003 ~.D10 ,005
L891  L174 .e01 .177 .002 .012 .002 ,017 ~-.026 ~,018 ~-,038
L838  L174 -.005 .002 .67 .,013 ~-,004 ,003 -,028 .011 ~-.01L
L640  -.515 ~.005 ,012 ,013 .325 .M1D .04 ~-.D45 -.045 ~-.034
.620 =-.519 .007 .,002 =-.004 ,0Q0 .346 .002 ~,014 ~-.015 ~.003
L5094 -.320 L000 ,017 .003 .041 .002 ,539 =-.08% =-.047 ~-.059
L5433 -,152 ,003 =,026 =-.028 =.045 ~-,014 =-.085 .682 .218 (287
.622  .007 -.010 =-.018 ,011 =-.045 ~-.015 ~-.047 .21B .613 .144
[-497 =-.270 L005 =,038 =.011 =,034 =.003 =,059 .287 .l44 679
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Tatile 2,2.6

Varimax Factor Patterns

(a) (b)
Three-Factor (ML) Two=-Factor (ML)
(833 .243 ,268] (868 .283]
<827 317 .22% .841 .339
.774  .283 ,230 .798 .311
228 .792 .230 .257 .780
.213 .706 .290 «237 JT713
.315 .61l6 .135 «319 .599
229 180 .796 «373 423
LA44 166 .528 526 .333
LMmp 312 .amm. Lmuo .ﬁwmn

the three generic properties that, respectively, these groups of measures indicate
in common, and presumably we name these generic properties verbal ability,
word fluency, and reasoning ability, 1t is desirable to remark that in worthwhile
rescarch with factor analysis, one would hope to make a detailed examination of
the measures used and to use relevant substantive theory to arrive at a deeper
understanding of what might be operations, processes, or theoretical concepts
requiring imagination to postulate, of which the measures are joint indica-
tors. The example. we hope, is unrepresentatively mechanical,

It should be remarked that even in this rather dull example we have genuinely
gained information, It was perfectly possible, a priori, that just one common
factor would account for the correlations, or that two, say word fluency and
reasoning, would do so with verbal ability a complex *‘resultant’" of those two,
It is sometimes suggested that **we only get out of a factor analysis what we put
into it."" This statement is never put quite precisely enough for one to come to
grips with it, but at least we can say that it does not mean that the results of the
analysis are entirely foreordained and uninformative. We can certainly get out
things that we did not think that we had put in and, occasionally, not get things
out that we felt confident we had put in.

The trouble with exploratory factor analysis, however, is that we often know
far more than we are pretending to know and we fail to use this knowledge, A
better analysis of the present example is given in Chapter 3, where we specify in
our hypothesis not only the number of factors but which variables have zero
regression weights on which factors. Thereby we create an unambiguous and
satisfying hypothesis and test the hypothesis precisely as it stands.

TABLE 2.2.7
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2.3. COMPONENT THEORY, IMAGE THEORY,
APPROXIMATE METHODS, AND HEYWOOD CASES

There are two “‘theories’” of multivariate data, quite logically distinet from
common factor analysis, which tend to give enough numerical and conceptual
similarities to it to make them be seen as competitive alternatives to it or some-
times to cause them to be confused with it and which certainly make them useful
approximations to it. Some readers, on the basis of other knowledge, will in fact
object to the treatment here of these two topics in one brief section, subordinated
to exploratory factor analysis. Let it be emphasized that this is because it suits the
overall plan of this book to do so. Principal component theory, sometimes under
the guise of optimal scaling or optimal weighting, has a considerable body of
literature in its own right. It is preferred by some investigators to common factor
analysis. Factor analysis as a generic term is generally taken to include compo-
nent theory and image theory. We shall continue, therefore, to use the word
common hefore factor analysis in its narrow sense and accept, but not deliber-
ately follow, the general usage of factor analysis as a broader, looser term,

(a) Principal Component Theory

Conceptually, the best way to understand principal components is rather different
from the way favored by the mathematician. Suppose we have a set of n observed
variables y,, . . . , y,. and we make a weighted sum of them, say,

§ =Wyt owpyy F ot oWy, (2.3.1)

just as we might in regression theory, where we want to choose the weights in
some “‘best”” way. But unlike the regression case we do not have an external
eriterion with which to correlate the weighted ‘*mixture.”" Instead, we want to
consider just internal relationships. We want a simple combination of all the
measures that ‘‘resembles'” each individual measure as much as possible. Now
one way to make this rather vague notion mathematically definite is to say that if
we calculated the square of the correlation of s with each of the variables, y,,
.« 4, then s would on the whole resemble all of them most when we choose
weights so that the sum of the squares of the n correlations of s with y, 5 with y,,
.+ ., swith y, is as large as possible. Given the (n X n) matrix of correlations of
Yio o« 4 ¥, there is a definite mathematical answer to this question, though its
arithmetic is rather unpleasant and requires a computer program. For example,
Table 2.3.1 gives the correlation matrix of a set of variables and shows the
weights to give them that will yield a weighted sum whose total of squared
correlations is the largest possible, No other choice of weights will increase the
value beyond that shown. (The effects of making small arbitrary changes in the
weights are demonstrated in the table.) We note that we could, of course,
multiply all the weights by a common constant without changing the sum of
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TABLE 2.3.1
From Hote!ling (1933)
Correl-
Weights ations
5 Reading Speed 1.000 701 266 084 602 «618
¥o= Reading Power +701 1.000 =-,059 .092 512 .695
43= Arithmetic Speed 266 =.05% 1.000 596 .448 608
mﬁ.bﬂ»ﬂ#ﬁﬁ«hn Power 084 .092 .596 1.000 425 578

Sum of sguares of correlations = 1.846

Full set of welights
602 =.362 ~-.404 JoB7
512 =-.512 L399 =.560
+448  ,557 =.521 =.472
425 «545 636 »350

If we take weights all equal to
«5, we get a sum of squares of
correlations = 1,840,

squared correlations. What matters is the proportions in the mixture, as in the
regression of a dependent variable on independent variables. Now suppose that
we record, but set aside, the “‘best’’ combination that we have found and look
for o *“*second-best’” combination. To avoid confusion, we label the best com-
bination s, and write

Sy =Wyt Wiy ko oLy, (2.3.2)

adding a subscript unity to the first set of weights we found. Now we look for a
“*second-best"" combination

S5 = Way¥, -+ Wia Vs L RO Wa, ¥, (2.3.2)

To avoid just finding s, again, we ask that s, be uncorrelated with s, and that
subject to this condition, it should have a maximum sum of squares of its n
correlations with v, . . . , ¥,. Again we obtain a set of weights wy,, . . . , wy,
that provide the weighted sum we require. We can now ask for a third-best
weighted sum, with maximum squared correlations with y,, . . . , 3, and uncor-
related with 5, and with s,. This process is continued. We can find n weighted
SUms, §,, . . ., 8, each of which is uncorrelated with all the other sums, and
each in turn has the largest sum of squares of correlations with the n variables
that it can have. We shall call these sums principal component scores.

Now let p,, be the correlation between the jth variable and the /th sum, 5, We
find that there is a converse relationship between the variables and the principal
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component scores. We already have each principal component score as a weight-
ed sum of variables

Sy =w Yyt owyy oWy,
53 = Wy ¥t oWy ot WY, (2.3.4)
5, = :.__,.._‘.\._ + WialVa e Wonda -

For example, from Table 2.3.1,

602y, + 512y, + 448y, + 425y ,
-.362y, — 512y, + 557y, + .5435y,
sy = =404y, + 399y, — 521y, + .636y,
sq = 587y, — .560y, — 472y, + .350y,

5

82

It trns out that we can interchange roles and write the variables as weighted
sums of the n components, with the correlations p,, as the weights; that is, we
have

Yo =PnS Fppasa T pLS,
Ya =Py tPpsy Tt Pays, (2.3.5)
V.: ™ ﬁ:_h_ +.ﬁuau..4u B oo g Pondn ¢

For example, from Table 2.3.1,
.@.- = .m_mm_ - .#WN%M - .NONhu + .Nsh.b

y, = 6955, — .620s, + .288sy — 229,
yy = 6085, + .674s, — .376s; — 1935,
y4 = 5785, + 6605, + 4595, + .143s,

We began with a regression of a sum of variables on each of those variables, and
we have thence obtained a regression of each of the observed variables on those
sums. Further, because the component scores are uncorrelated, the expression of
each observed variable as a sum of components gives an analysis of its variance
into n additive parts, one due to each component. That is, if y, is in standard
measure, then its unit variance is given by

af =1=p} +pfa+...p (2.3.6)
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for example
o2 = 8182 + (—.438)2 + (—.292)* + .240% = 1.00

As we saw initially, each component in turn explains the maximum possible
proportion of the variance of all n of the variables; for example, the first compo-
nent explains

B182 + 6952 + 6082 + .5782 units of variance.

If we wanted to substitute just one combined measurement for our n measure-
ments y,, . .. , ¥, we could not do better than to use the first principal
component score, §,, which is maximally correlated with all of them and ex-
plains more of their variance than any other composite measurement could. If we
wanted to keep some m measures, less than all n of them, we could not do better
than to keep the first, second, . . . , mth principal component scores, ordered in
terms of the magnitude of the sum of variance explained, We might call principal
components *‘best approximate descriptions’” of multivariate data.

As in the common factor model, we find that the correlation between any two
variables can be written as the sum of the products of the correlations of the two
variables with all n of the components. That is,

P = PPy * PPz T 7 PjpPin 2.3.7)
For example,

rip = 818 % 695 + 438 X .620 —
292 % ,288 ~ .240 X .229 = 701

Except in the special case where there are redundant variables in the set (i.e.,
where some variables in the set can be perfectly predicted from the rest, usually
because we have included sums of part scores along with their parts in the set),
we require all n of the components to explain the correlations by (2.3.7). This is
in contrast to the common factor model, where we usually have m factors, where
m is much less than n, explaining the correlations (but not the variances) of the
variables.

It is reasonable to hope that **a few’" of the principal components will explain
a large part of the variance of the given variables. However, the point deserves
emphasis that we cannot in general find correlation matrices of n variables that
can be entirely explained by less than n components, either in respect to the
variance of the variables or in respect of their correlations only. Hence, principal
component theory does not yield a falsifiable hypothesis. Typically, in social
science work, the output of a principal component analysis is presented as a
matrix of the correlations pj, between the variables and the components, usual ly
omitting the columns of correlations that are supposed by the investigator to be
“negligible’” in some sense. We shall refer to these correlations as principal
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component coefficients. (Sometimes they are known as principal component
loadings, following usage in common factor analysis.) The sum of squares of the
elements in each column of this matrix is the variance of all the variables that is
explained by that principal component, in terms of the analysis of the variance of
the variables into uncorrelated parts.

Occasionally we may feel that we can interpret the component score as 4
weighted sum of the given variables on the basis of the relative magnitudes and
signs of the parts of the ‘‘mixture.’" Tables 2.3.1 and 2.3.2 give an example
from Hotelling (1933), His interpretation, which is plausible enough, is that

the chief component seems to measure general ability; the second, a difference
between arithmetic and verbal ability. These two account for eightythree percent of
the variance (of the four variables). An additional thirteen percent seems to be
largely o matter of speed vs. deliberation. The remaining variance is trivial.

It should be clear from this example that principal component theory resembles
common factor theory but with important differences. Its output gives us correla-
tions between observed variables and components. We interpret those compo-
nents, if we can, in terms of what is measured by the variables that are correlated
with each component. However, the principal components are themselves known
weighted sums of the given variables, chosen to explain variance in terms of
multiple correlation principles; whereas common factors are unknown variables,
chosen 1o explain correlations in terms of partial correlation principles.

To take another example, from Thomson (1934), the constructed correlation
matrix in Table 2.3.3 is precisely fitted by the common factor model with one
common factor. Its five principal components have the coefficients indicated and
successively explain 2.683, 0,890, 0.652, 0.448, 0,328 units of variance (these
sum to five as they must). The one common factor explains the correlations
perfectly, although not even four of the five components explain the correlations
perfectly. On the other hand, the first principal component alone explains more
variagnce than the one common factor.

TABLE 2.3.2

Hotelling (1933)
Principal Component Coefficients

lst 2nd 3rd 4th
Comp. Comp. Comp. Comp.

Reading Speed .818 -.438 -.292 .240
Reading Power .695 =-.620 .288 -.229
Arithmetic Speed .608 .674 =,376 =-.193
Arithmetic Power L.578  .660 459 J143

Sum of Squared
Correlations 1.846 1.465 2L 167
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TABLE 2.3.3
Thomson (1934)

(a) orrelation Matrix

1.000 .669 .592 .458 .251
.669 1.000 .566 .438 240
.592  ,566 1,000 .387 .212
L4538 .438 .387 1.000 .l64
L2510 .240 .212 ,164 1.000

This matrix is explained perfectly
by one factor with loadings

[.837 .800 .707 .548 .303)
(b) Principal Component Coefficients

.856 -.092 ~.152 -.217 -.4367
840 -.098 ~.173 -.346 .365
.790 ~.116 -.294 .523 .060
.673 -,182 .713 .083 .020
.413 .908 .069 .022 .009]

(c¢) Residuals from First Principal Component

" .267 -.050 -.084 -.118 -.1037
-.050 .294 -,098 -.127 -.107
-.084 .098 ,376 -.147 -.114
-.118 -.127 -.147 .547 -.114
-.103 -.107 ~-.114 -.114 .829.]

A word is necessary about the relation between the account of principal
component theory just given and the one that the reader is most likely to encoun-
ter elsewhere. Hotelling (1933) introduced principal component theory in his
first paper, both as above and in a different fashion. The idea of finding a
weighted sum that resembles all our variables most, by having maximum
(squared) correlations with all of them, is conceptually a good way (o think about
principal components, but it leads to rather difficult mathematics. The most
commonly preferred way to introduce principal components is to say that we are
looking for a set of weights to give a score with maximum variance, subject to
the condition that the sum of the squares of the weights be held constant, thus
varying the proportions in the “‘mixture’ but not the amount. Newcomers to
multivariate analysis sometimes follow the mathematics of this notion, which are
much easier, and yet do not understand the notion itself (i.e., wiy we want such
sums), We shall simply accept the fact that the two problems have the same
mathematical answers (when the variables are standardized). Further, the mathe-
matical answers happen to be the same as certain considerably older problems in
astronomy and geometry. The geometrical problem is that of finding the prin-
cipal axes of ellipsoids; hence we sometimes find principal axes (perhaps
loosely) used as a synonym for principal components. Also, because of prior
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usage in writings on the fundamental problem of finding equivalents of our
maximized sum of squared correlations, which is also the total variance ex-
plained by each component when the variables are in standard measure, these
quantities are sometimes published as the eigenvalues, latent roots, or charac-
teristic roets of the correlation matrix, and the corresponding sets of principal
component coefficients are sometimes labeled eigenvectors, latent veetors, or
characteristic vectors,

It is quite usual to find matrices of principal component coefficients presented
in the literature as substitutes for common factor coefficients. It is also usual to
find, under titles like “‘principal axes factor analysis'' or *'principal compo-
nents, iterated once,"” modified principal component analyses that have made
one or two arithmetic steps of unstated nature toward obtaining least squares
estimates in the common factor model. These are legacies of the era from the
19305 to the 1950s when problems of estimation were not well understood, Such
results in the literature are hard to evaluate. More will be said about them later,

It will be noticed that no distinction has been made so far in this section
between principal components in a population and principal components in @
sample. In fact, the ambiguity, which was deliberate, leaves us free to read all
these remarks in terms of either, especially as there are no restrictive hypotheses
to test.

(b) Image Theory

The mathematics of image theory is a simple application of regression theory, It
is interesting, partly, because of a particular conception about the way in which
we choose, or we should choose, which measurements to make, Generally, we
know or think we know well enough how to define a population of subjects that
is of interest to us and to choose subjects from it. Besides choosing our subjects,
we also decide how many things and just what things to measure on them.
Suppose we pretend that this decision is, like the matter of choosing subjects,
one of selection from a population. In imagination, we suppose that given time
we could have listed all the distinet measurable properties, or behaviors in
various situations, of our subjects that can be conceived. We regard the things we
choose to measure as a subset of all the distinct choosable measurements, imag-
ined or as yet unimagined, that could ever be made on our subjects. It is not
obvious for a given class of subjects whether or not this list is infinitely long.
Now suppose that instead of such an entire list, we are imagining a list of
attributes of a given, more or less definable, kind (e.g., cognitive attributes,
emotional attributes, attitudes; or at a more detailed level of description, arith-
metic performances or vocabulary knowledge). To the extent that we have a
definite denotation of the *'kind’’ so that we can recognize if a measurement is
that kind of measurement or not, we can imagine using all distinct measures of
the kind in question. Such an entire set of conceivable measures has been dis-
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cussed at times under the name of a behavior domain or of a universe of content,
[t might be claimed that the object of factor-analytic methods is to discover what
measures belong to what behavior domains. On the other hand, it can be claimed
that the investigator has a duty at the beginning of a study to be as clear as
possible about the definition of the behavior domain that he is about to investi-
gate. In practice we are likely to have notions about the behavior domain whose
degree of precision varies from vague to precise, depending on how little or how
much we know already. It seems easy to mark off all the items requiring a subject
to add numbers together and give the sum from all the items that require some-
thing else or something more, We could say, therefore, that numerical addition is
a well-defined behavior domain. On the other hand we might not be able to get
all psychologists and all psychiatrists to pick out just the same items as measures
of “anxiety."" (Do you have bad dreams? Do you perspire a lot? Do you think
the world is fundamentally an evil place?) Presumably a sensitive interplay of
clinical theory, measurement, and multivariate analysis should lead us from a
vague conception of the behavior domain of **anxiety'' to an increasingly precise
denotation of it. But generally, although we can try to be precise in our concep-
tion of the behavior we wish to study, we have to be willing to work with
conceptions ranging all the way from vague intuitions to precise denotations that
serve as instructions for inventing all the possible measures that belong to the
domain.

It is important to note that the behavior domain (the “*kind'" of propersty) we
investigate need not be thought of as conceptually simple but may in fact be
subdivisible, or cross-classifiable, into a number of more elementary attributes,
For example, addition items form a behavior domain, but they can be further
classified in terms of (a) the number of terms in the sum, (b) the number of digits
in the terms, and so on. The attempt to define complex behavior domains as
logical combinations of elementary attributes has been described under the title
facet theory, In some areas of inquiry, we can indeed use logic, or substantive
knowledge, to describe a behavior domain as a combination of distinct attributes
or facets. 1t is then a matter of fact whether the logical analysis we produce of the
kind of thing we measure will serve to predict the statistics of the measures in
some population. The basic expectation of psychometricians seems to be that the
more two measures resemble each other in the nature of the properties measured,
the higher should be the correlation between them in any or all or most popula-
tions. This is not a logical necessity, of course. It is a postulated empirical law
that is based on the *‘common-elements™ explanation of the *‘why'" of correla-
tion. Why are two variables correlated? Because they (in part) measure the same
thing. As we change the properties of a given item to derive less and less similar
items, we usually expect their correlations with the given item to decrease. Out
of a strong a priori conceptual analysis of measures, we should be able to group
them into kinds or perhaps arrange them in an ordered sequence in respect of one
or more attributes. For example, we could group all the one-digit addition items
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together, all the two-digit addition items together, etc. Alternatively, we could
order the items in terms of number of digits. We would then hope to find, in the
correlational behavior of the measures, confirmation of our conceptual analysis.

The notion that behavior domains **exist"” and that we should try to make our
measures ‘‘represent’’ them is an interesting way to describe the notion that we
should come to know what properties we are measuring and to know which
alternative measures will serve as indicators of those properties.

The basic mathematical idea of image theory is independent of the conception
of behavior domains. Given any set of n variables, y,, . . . . ¥, in standard
measure, we can obtain the regression estimate of each variable in turn on the

remaining n — 1 variables. We write

y=by * byy, + v 31_3- LT +
et h-:.(:.

(Note the way in which we indicate the omission of y, itself from the expression
on the right.) The regression weights and the multiple correlations can be caleu-
Jated by the standard arithmetic procedures that were taken for granted in Chapter
1. No new arithmetic is needed. Tables 2.3.4 and 2.3.5 give the regression
weights and squared multiple correlations for the Spearman case of Table 1.5.1,
and the case previously factor analyzed in Tables 2.2.2 to 2.2.7.

We now think of each variable as the sum of two parts, its regression upon the
remainder, §,, and its residual about that regression, ¢, say. Guttman calls the
regression part ¥, the partial image of y, and the residual ¢, the partial antiimage
of y;. Now suppose that there are infinitely many measures in the same behavior
domain a5 our given measures y,, . . . , ¥, (i.e., infinitely many distinct measur-
able properties of the same kind). Then we define the total image of each y, as its
regression on all the remaining measures in the same behavior domain and its

total antiimage as the residual about that regression.

(2.3.8)

TABLE 2.3.4

Image Analysis of
Spearman Matrix (Table 1.5.1)
Regression of Each Variable on Remainder
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Multiple
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3 428 418 .196 .0 .083 .059
b 317 .341 ,160 .099 0D .048
5 .221 .276 .130 .08B0 .055 .0

TABLE 2.3.5
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Regression of Each Variable on Rema

inder

Regression Weights
%]

it |

Multiple
Correlation

Squared

Variable

~m ™~ 9O 9 9 O =
N =T = O NN Do~
©O C 0O 0O mMHMOMM®©
LI D D L e I R S
|
N O~ N WM
N N - NNO ;e M._
O O 4 0 0 0 M™N O H
L I R S S T
I
-~ @ O o ™ [
NN ™M ™m0 N .u%
©O O o0 0o e m=
« s ¥ 8 e 2 & O
1 I
~ & = ~ ™ W
NOWw N oW~ 40%
o o oMN MO0 00 O
*. 8 ¥ & & & 8 » a
I
e 0 M -
- N O ™~ 062“
C 0O O w O M™N O O ™
L e T e T I T
|
@ M~ N NN W ow N
Mm W » N oM o M e
00 0 0 = MO O
LU R S B A T N )
! I
< 9 - I B - TR -
< W 0O v 9 0 N
m N © O 0O 0 0 ~ O
L e L T S S
I I
o N O < ~ @
o~ ?2555”@
n o M < O - 8 -4 O
L Y T AT T " S T
|
W oM on o N D o,
076350“5
o n Mmoo o - o
LN R B U T T S S )
I
W o N Mo wr~oD
35?5221.5”“
M~ M~ O N N = = I =
" e " N s e a a
- NMm T N Y~ m o

A



72 2. EXPLORATORY COMMON FACTOR ANALYSIS

Unlike the residuals in common factor analysis, the partial antiimages are not
mutually uncorrelated, so the partial images of the variables do not explain their
correlations (in the partial-correlation sense of “‘explain™). Hence the Eﬁmm_
images cannot serve as *‘common parts'’ in the factor-analytic sense. Yet there is
an obvious sense in which we might feel that image theory should, like common
factor theory, be about *‘what variables have in common,"" because it is, by
definition, about **what each variable has in common with the remaining n — 1
variables." It is possible to show that the partial image variance of each variable
(the squared multiple correlation of each variable with the remaining n — 1) is
always less than its communality (squared multiple correlation with the common
factors). This also means that its partial antiimage variance (residual variance
about its regression on the remaining n — | variables) is always greater than its
uniqueness (residual variance about its regression on the common factors), How-
ever. if the common factor model with its limited number of factors correctly
describes the entire behavior domain and if the behavior domain contains infi-
nitely many distinct measures, then the total image of each variable is the same
as its common part, the two residual parts are the same, the total image variance
is equal to the communality. the total antiimage variance is equal to the
uniqueness, and generally the two theories coincide completely.

It is important to note the requirement, rather loosely stated, that the common
factor model must correctly describe the entire (infinite) behavior domain. If, as
we add more variables to our list, we add more factors, so that by the time we
““have an infinity"" of variables, we ‘*have an infinity”* of common factors, then
we do not find total images and common parts coinciding in the limit. More
precisely, the ratio of the number of factors to the number of variables should go
to zero in the limit. We can and should contemplate the possibility that the
common factor model is a quite inappropriate model for a given set of measures.
Evidence for this is obtained if we fit, successively, m, m + 1, . . . factors to a
sample correlation matrix and the fit successively improves but not nearly fast
enough, and we have many factors of not very pleasing appearance before we
can feel satisfied with the fit. Experience and representative mathematical cal-
culation suggest that infinity, in practice in this area, is not as far away as we
might think. That is, the behavior of as few as a dozen or, conservatively, 20
measures can give a very good idea of the behavior of the entire set from which
we are pretending they were drawn. It may be shown that the partial mﬁnmw
weights should all tend to zero if the common factor model **holds™ in the limit
and should all be “*small’* in observed correlation matrices of reasonable size (a
dozen or more variables). Table 2.3.6 gives a correlation matrix for which the
common factor model is entirely inappropriate, and gives an image analysis of it.
The weights for this case may be contrasted with the weights in Tables 2.3.4 and
.35

The main contribution of image theory to common factor analysis so far has

been the provision of approximate methods for exploratory analysis, recom-
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TABLE 2.3.6

Image Analysis of Chaln Model Data
[See section 4.2 (c)]

Correlation Matrix

1.000 .5000  .333  .250 .200  .l67
.500 1.000 666  .500 L4500  .333
.333  .666 1,000 .750 .600  .500
.250 .500 .750 1.000 .800 .667
.200  .400 .600 .800 1.000 .833
167  .333 .500 .667  .833 1.000

Regression of Each Variable on Remainder

Variable Sduared

Multiple Regression Weights
Correlation .
1 -250 “f .500 .000 .000 .000 .000
2 531 <313 .0 .561 .000 .000 .000
3 .675 .000 .388 .0 .556 ,000 000
4 . 754 .000 .000 .421 .0 .545 ,000
5 .801 .000 .000 .000 .440 .0 .539
b <694 .000 .000 .0DOO .000 .831 .0

mended by Joreskog and Kaiser, to be discussed shortly. Perhaps the more
important contribution it has to offer is the way it supports the view that factor-
analytic investigations should be directed at clearly conceived and defined be-
havior domains, using clearly representative measures. Such investigations will
usually be confirmatory rather than exploratory.

(c) Approximate Methods

Factor analysis has been developed in the course of 70 years of work, of which
only the last 20 have been aided by electronic computers. Especially in the work
from the 19305 to the 1950s, tremendous emphasis had to be placed on methods
for turning the mathematics of factor analysis into feasible arithmetic for desk
calculation. Unfortunately, this has led to much confusion in the literature, some
of it built into the traditional language of factor analysis; confusion between
sample and population, between measures of fit and methods of fitting, and
between central concepts of the theory and arithmetic devices including crude
approximation devices for saving work.

The modern view is that the common factor model is a statistical hypothesis
that may be “‘true’’ of a population and that at least prescribes the number of
common factors. Given at least this prescription, we can use any one of a number
of arithmetic algorithms to get (least squares or maximum likelihood) *‘best"
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estimates of the population factor loadings and of the population uniquenesses
and use the likelihood ratio criterion or inspection of residual covariances to
reject or retain the hypothesis, as described in Section 2.2,

Partly because of the pressure of arithmetic problems in multiple factor analy-
sis and partly from an actual failure to be as precise about concepts as we, the
inheritors of decades of creative work on the subject can be, the earlier workers
have handed down to us a number of confused modes of thought that are still to
be recognized in the vocabulary of factor analysis. The reader will find, else-
where, the persisting notion that in factor analysis we first **guess™ the commu-
nalities of the variables and then *‘extract’* common factors one by one until the
residuals are small enough to suit our taste. This process yields “‘obtained™
communalities that are different from the ‘‘guessed'’ communalitics. These
treatments (1) tend to confuse basic conceptual aspects of the model with crude,
simplified arithmetic procedures for fitting it; (2) cannot by their nature produce
best fit, We can obtain best fit only when, under a hypothesis as to the number of
common factors, we produce nm + n estimated quantities (the factor loadings
and the uniquenesses), each of which is best in the context of the others. Any
method that computes the first column of factor loadings and never changes it
when the others are computed cannot be choosing best numbers. Such treatments
should be thought of as approximate methods, replacing “‘best” estimation
procedures. . .

There would secem to be at least four valid reasons for using approximate
methods. The first is. quite simply, to save computing costs. The cost of ML
estimation in common factor analysis can be a considerable percentage of the
cost of the entire research project. A saving here could certainly be justified if an
approximate analysis or a scries of analyses were used to guide decisions govern-
ing a final, *'best’" analysis of the data, by the methods of Section 2.2 or .3,
Chapter 3. The second is that a study may involve so many variables that its
dimensions will not fit the limitations of the available ML computer program.
We could, as a matter of fact, question whether a really large-scale study should
ever be carried out. That is, will an investigator ever be able to collect together,
on good, rational grounds, a really large number of measures that are likely to
yield a clear, interpretable analysis? But one cannot legislate against such stud-
ies. The third use for approximate methods is one that the ordinary user does not
even have to know about as it is hidden away inside a computer program for an
exact method. That is, it saves money to have an approximate analysis that
provides a starting point, not far away from the solution, for the numerical
methods that yield ML or LS estimates. The fourth reason for using approximate

methods is extremely questionable. The frequency of occurrence of Heywood
cases (see following) in ML estimates leads some workers to recommend approx-
imate analyses because these do not yield Heywood results. (For the moment,
think of these as *‘impossible’" estimates.) On the other hand, when a Heywood
case occurs, the data may be trying to tell us something, namely, that the study
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has not been well designed in the sense that not enough variables have been
included to define each factor adequately. In any case, if we are otherwise
convinced that the model is appropriate, we can use the Bayesian estimation
procedure described in the following,

Approximate methods that have been strongly advocated and/or are in com-
mon use include: (1) the use of principal components of the sample correlation
matrix, instead of common factors; that is, we compute correlations between the
variables and the m main principal component scores and regard these as factor
loadings; (2) the use of ‘‘squared multiple correlations (SMCs) as commu-
nalities™"; that is, we use the residual variance of each variable about its regres-
sion on the remaining n = | (its partial antiimage variance) as an approximation
to the estimate of its unique variance; (3) the use of principal components of the
partial images of the variables as common factors; (4) the use of “‘reduced"
partial antiimage variances as unique variances; that is, we find a constant, less
than one, by which to multiply these variances, to allow for the fact that they are
strictly greater than the unique variances.?

Table 2.3.7 gives the results when these four methods are applied to a simple
one-factor case. Table 2,3.8 lists the values of the LS fit function Q (equation
2.2.1) for representative published correlation matrices. From these cases it is
fairly clear that method (4) is best, followed closely by (2), and then (3) and (1)
virtually tied.

At this point we should note also that a traditional problem of exploratory
factor analysis has concerned nonstatistical criteria for deciding what the number
of common factors, m, might be. A criterion that can indeed be a useful guide for
a first analysis has been recommended for a number of different reasons. It is
often mentioned briefly in accounts of applications as ‘‘eigenvalues (or latent
roots) greater than one.'" Interpreted, this means that the number of principal
components of the observed variables that explain more than one unit of variance
(whose sum of squares of correlations with the n variables is greater than unity)
indicates the smallest number, or the actual number, of common factors that
should account for the correlations. A discussion of the logical basis of this
criterion is a highly technical matter, and the reader is invited to accept that it is
sometimes a good practical guide (and occasionally very very bad), We therefore
expect to find that an ML estimation program for exploratory factor analysis will
allow us to prescribe the number of common factors, if we are prepared to do so,
or will let us tell the computer to choose a first hypothesis on the basis of the
number of eigenvalues of the correlation matrix greater than one or greater than a
number that we supply (and we are expected to supply the number one). We can

201 these four methods, it is difficult to attribute the first or the second to an individual investiga-
tor. The third s due 10 Kalser (1970), and the fourth to Joreskog (1962). All the last three methods
are based on Guttiman's clossical results on image theory (see Mulaik, 1972),
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TABLE 2.3.7

Correlation Matrix (Repeated)

1.00 W72
.72 1,00
.63 .56
-1 .48
A5 .40
.36 .32
(1) Principal
Component _
"Factor Pattern'
.8832 .220
.B326 -.015
.7697 -,050
L6937 -.073
L6044 -.083
.5023 -, 084
(2) SMCs
Fac¢tor Pattern
L BL6T .283
L7898 .051
,7025 .035
L6071 026
L5083 .020
L407 L015

(3) Partial Image
Factor Pattern

L7769 .396
L1248 157
L6447 .129
5571 .107
N 088
LA742 .069

(4) "Reduced' Partial

Antiimage Uniquenesses

.B566 .266
.7991 .035
.7108 021
6162 014
L5143 010
L4126 .006

.63
.56
1.00

.54 A5 .36
.48 L40 «32
L42 .35 .28

42 1.00 .30 .24

.35
.28

-. 015

307
-.081
-.098
-.103
-,098

.051
.376
.005
.000
-.001
-.002

157
475
093
076
. OON
049

.035
361
-.088
-.011
-.011
-.010

.30  1.00 .20
.24 .20 1,00

Residual Matrix

-,050 =-.073
= ﬂH l.oww
407 - 114
-.114 .519
-.115 ~-.119
-.107 ~.108

Q = .0088523

Residual Matrix

.035 .026
.005 .000
.506 -.006
-, 006 .631
-.007 ~-.009
-.006 -.008

Q = .0003664

Residual Matrix

129 .107

.093 076

584 061

061 690

049 042

(039 .031
Q = .0064568

Regsidual Matrix

.021 014
-,.008 -.011
495 -.017
-.017 .623
-.015 ~-.016
-.013 ~-.013

Q = .002464

Correct
Solution
.9
.8
.q
.6
D
A
-,083 -, 084
-.103 -,098
-.115 -.107
-.119 -.108
.635 -, 104
-.104 .748
020 014
-.001 -.002
-.007 -.006 {
-.009 -.008
742 -.007
-.007 834
.088 .069
062 049
049 039
040 031
.782 025
.025 860
.009 .06
-.011 -.010
-.015 -.013
-.016 -.013
Y ) -,012
-.012 .830
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TABLE 2.3.8
Harman: 8 Harman: 24 Matrix in
Physical Variables Psychological Tests Table 2.2.2
(1) .002765 .003356 003662
(2) .000570 001711 .000432
(3) L002651 .002461 004630
(4) 000532 .001710 .000113

also expect to find that many published factor analyses, especially the approxi-
mate ones, will say that the number of factors was determined as *‘the number of
eigenvalues greater than one.'" As mentioned briefly at the end of the discussion
of principal components, the reader should be wary of ambiguities in published
applications of factor analysis. Many applications, right up to the current decade,
use an approximate method. It is sometimes difficult to tell what approximation
has been used, and usually it is impossible to evaluate the goodness of fit of the
model and hence to decide how seriously the results can be taken. It is hard to
give advice about this situation. If the investigator has published the correlation
muatrix, or it is accessible, we can always reanalyze it properly if sufficiently
concerned. But often editors do not permit the correlation matrix to be published,
and the description of the analysis is so scant that we would not even know how
1o repeat it 1o compare our results with details of the original. It must, then, be
admitied that many published factor analyses do not meet the usual criteria for
respectable research reporting of presenting sufficient detail to enable indepen-
dent testing.

Broadly, if enough information is given to let us believe that the sample
correlation matrix is a reasonubly stable estimate of the population matrix, an
approximate exploratory analysis will often as a matter of fact resemble a **best-
fitted™" analysis enough to yield the same conclusions. But if we are given only,
say, the rotated factor matrix, it is perhaps better to regard the study as never
having been carried out at all,

A high percentage of published studies present something like the following
information: **The correlations were factored using principal components with
eigenvalues greater than one, and rotated to simple structure using varimax,
yielding the rotated factor loadings shown in Table 2.3.9."" Sometimes also
“loadings below .3 are omitted,” as though leaving out these numbers helps the
reader to comprehend the results. The statement is ambiguous, for we do not
know, and indeed the investigator may not know, if the program borrowed from
the computer center obtained only principal components, as in approximation
(1), or crudely fashioned a closer approximation to LS estimates out of these.
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TABLE 2.3.9
Varimax Factor Pattern
I I 1Ix v v h?

1 0.143 .522 .197 .478 ~-.084 .568
2 224 .197 .608 .225  .166 .537
3 -.049 .134 ,002 -.186 .790 .678
4 .737  .303  .177 =-.131 -.118 .697
5 024 .270  .065 =-.B00  .148 .741
6 746 =-.267 ~-.161 .099  .070 .669
7 012 -.526 .002 .004 =-.329 .386
8 261 -.271 .050 489  .488 621
9 .155 .08l =-.819 ,197  .102 .752
10 059 .672 =-.347 .08l =.151 .605

Wphe data were factor analyzed using principal
components with mpamncmwumm greater than one,
followed by varimax rotation."

- How to lie with factor analysis.

Documentation of package programs for *‘factor analysis™ does not always
make this clear.

If we are presented with just the result in Table 2.3.9, we are at a loss to
evaluate it. In fact, it is an analysis of the correlation matrix in Table 1.4.4. The
correct number of common factors is zero, not five; hence the *‘eigenvalues
greater than one’' guide fails us completely. It is disconcerting to ?a that the
process of transformation toward approximate simple structure can yield enough
large and small values of the factor loadings to give ,.a:nﬂ some factor analysts
quaintly refer to as a ‘‘compelling"’ simple structure (i.e., _u_.nmcana?.ga that
“‘compels’™* our faith in it.) It is comforting to know that a reanalysis of the
correlation matrix, if this were available to us, would have given us *'the =”EF i
namely that it is drawn from a population of uncorrelated variables with no
common factors (i.e., no generic properties in common).

(d) Heywood Cases (Improper Solutions)

With the increasing use of good methods of estimation, investigators are in-
creasingly encountering cases where the best-fitted estimates are improper, _...m.
cause one or more estimates of uniqueness (residual variance) are negative. This
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of course is unacceptable, as variances are essentially positive quantities (means
of squares). Even a zero residual variance is unacceptable, as it implies exact
dependence of an observed variable on the common factors, This could only be
true if the variable has no measurement error. That negative uniquenesses might
arise was first pointed out by Heywood (1931); hence it is commonly referred to
as a Heywood case. Alternatively, it is known as an improper solution. We can
summarize the situation in just six points and draw some tentative conclusions.

(i) Some investigators tend to regard the fact that Heywood cases can occur
as an indication that something is wrong with the basic principles of the common
factor model and that we should use some other technique of multivariate data
analysis instead-—perhaps principal components or image analysis.

(ii) A Heywood correlation matrix is a perfectly possible correlation matrix
for a population,

(1) On the other hand, & **non-Heywood" population can give samples, by
chance, in which the estimators of some positive population residual variances
are negative; hence a Heywood case in a sample does not prove that the popula-
tion is a Heywood case. A second sample might yield a different conclusion,

(iv) Sometimes a Heywood case can be cured by fitting fewer factors, but
often this gives unacceptably poor fit.

(v) Most modern programs for ML or LS estimation are arranged to stop the
search for a minimum of the function with respect to any uniqueness before it
becomes negative. Such a procedure is at best a makeshift, as we know that we
have not found the required minimum, and a zero uniqueness is still really
unacceptable,

(vi) A very common cause of Heywood cases seems to be a failure on the part
of the investigator to represent each factor by a sufficient number of tests with
large loadings on it. Consider the two simple general-factor correlation matrices
in Table 2.3.10. In case (a), by simple inspection, as in the earlier discussion in
Chapter 1, we deduce that the single-factor model fits the correlations with
loadings .6, .5, and .4. These loadings are determined precisely by the data, as
are the corresponding unique variances, .64, .75, and .84. In case (b), we find
that the loadings and unique variances are not uniquely determined by the data,
We can choose loadings of .6, .5, and zero or 1.2, .25, and zero or ,2, 1.5, and
zero or, indeed, any two numbers whose product is .30 for the first two loadings
with zero for the third. And we note immediately that if we can easily find pairs
of numbers for the loadings in which one or the other number is greater than
unity and the corresponding unique variance is negative, so can the computer, of
course. This fact seems to have been well-known to Thurstone in the 1930s as an
indeterminacy of the parameters of doublet factors—factors with only two non-
zero loadings—but its implications for the occurrence of Heywood cases have
not been widely recognized. More generally, if one or more of m common
factors have only two tests with nonzero loadings, then those loadings and the
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TABLE 2.3.10
(a) (b)

1.00 .30 .24 1.00 .30 .00
.30 1.00 .20 .30 1.00 .00
.24 L,20 1.00 .00 .00 1.00

(c)

1.00 .30 .024
.30 1.00 .02
.024 .02 1.00

corresponding unique variances are not identified :..:E:nG. determined by mrn
correlations), and Heywood cases are likely to occur. Notice ==,= the negative
unique variance is not specifically associated with one S.. the 5«55&. ﬁan_ the
phenomenon need not be eliminated by deleting the 5:.%_“ with negative re-
sidual variance from the analysis.) More generally still, if one or more factors
have only one or two tests with large loadings and .p_._n rest of the _ownSmm. are
small (singlet or doublet factors, in Thurstone's terminology), the factor _cma_.smm
on this factor may be very poorly estimated from even a ::m..u sample. Consider
case (¢) in Table 2.3.10. The correlations are consistent with only o_‘ﬁ.ma .,.:.
loadings, .6, .5, and .04, but because the last _cm.asm is close to zero, it is aﬁ.x
to imagine that in finite samples it would behave :w.o case @. yielding nz.__.:nﬁ._.
of loadings greater than unity, and estimates of residual <u:§nn.m EE m_.... =nmmm
tive. (It is not yet common practice to compute standard errors of estimate o
factor loadings and uniquenesses, (o put nosmamsno cc::& on Ea_: and n_na__.
mine how well they have, individually, been estimated. It is technically ﬁomm.&_a
and desirable to do so.) Generally, expérience suggests that we can hope to avoid
Heywood cases and, indeed, poorly estimated common m_mnﬂcn loadings mnm_
unique variances, if we make sure that every common factor is .nnm:& 3 at _.Em,
three and preferably four or more variables having large “E.m_smm on it. This is
reasonable in terms of the substantive aims of factor analysis, vnmmumn we can
hardly expect a common abstract attribute to be well defined by just two mea-

sured of it.

Negative estimates of essentially positive quantities oceur in statistical prob-
lems other than those of factor analysis. One %ﬁamns, 10 ::.”an u._dc_oa_m in-
volves the adoption of the Bayesian ﬁ::amoﬂzq w& m.w:z.:n& estimation. wnnam.
in this way of thinking, we attribute @ probability distribution to the population
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parameters we wish to estimate in which we may incorporate and give fairly
exact expression to our beliefs about the population studied. Here, for example,
we might turn our belief into the assertion that the probability of finding a
negative or zero residual variance is zero, whereas the probability of finding
nonzero values is greater than zero. It is possible to turn this thinking into a
plausible probability distribution of uniquenesses, which leads to a simple modi-
fication of a ML estimation program that prevents it from obtaining negative or
zero uniquenesses.” This approach to the problem is possibly better than the
common device mentioned before of stopping the analysis at the point where a
residual variance reduces to zero; but before either of these devices is adopted,
the investigator should check whether the data yield one or more singlet or
doublet factors, in which case there is a more serious problem in the form of ill-

defined factors and underidentified (nonuniquely determined) parameters with
the study.

2.4, DEVICES FOR APPROXIMATING SIMPLE
STRUCTURE

The simple hypothesis of exploratory common factor analysis that prescribes
only the number of common factors is not specific enough to determine unique
estimates of the common factor loadings if the number is more than one. We say
that these parameters are not *‘identified.”” When we obtain a set of estimates,
we have to recognize that infinitely many alternative sets would fit the data
equally well. The mathematician can tell us how to compute from a given set of
factor loadings all the possible alternative values, which are transformations of
the values we first happen to obtain,

A widely accepted goal, in transforming a given factor pattern into another, is
contained in the notion of simple structure, Given an explanation of the intercor-
relations of our n variables in terms of a minimum number, m, of common
factors, the basic notion of simple structure is, further, that we explain the
correlation of each variable with the others by a minimum number of those
common factors. That is, broadly, a factor pattern has simple structure when
each variable has nonzero loadings (regression weights) on as few of the factors
as possible. Partly on the basis of experience, five rules have been given for
simple structure that are supposed to legislate an unambiguous choice among
alternative solutions that might be equally acceptable in terms of the fundamental
definition. These are: (1) Each row of the factor pattern should have at least one
zero element, (2) Each column should have at least m zero elements. (3) For
every pair of columns there should be at least m variables with a zero coefficient
in one column and a nonzero in the other, (4) In the case where m is greater than

ISee Martin und McDonald (1975),
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three, for every pair of columns there should be a large proportion of variables
with zeros in both columns. (5) For every pair of columns, there should be a
small proportion of variables with nonzeros in both columns. Notice that only the
first three of these rules are objective. It is customary to illustrate simple struc-
ture by using zeros and crosses as in Table 2.4.1 to indicate the positions of zero
and of nonzero elements. Table 2.4.1(a) shows a simple structure that fits all the
criteria. Table 2.4.1(b) shows a more specialized structure that is certainly a
simple structure and actually fits the stronger principle that every <,p._1mc_o has a
nonzero loading on only one factor. This structure is known as independent
clusters. .

Thurstone originally advocated the simple structure principle as reflecting a
truth about the psychology of cognition where the concept originated H.in.. that
we do not seem to use all our *‘mental faculties’ in any one cognitive task).
(Thurstone, at the time of the introduction of simple structure, explicitly re-
garded factors as a scientific revival of an old discredited ::mn__nuam.n notion of
mind as made up of '‘faculties.””) The concept also carried with it a second
principle of parsimony to supplement the first, by which we first axv_m_u all Eo
correlations with as few factors as possible and then explain each correlation with
as few of those few as possible. . .

The unquestioning acceptance of simple structure in factor patterns is g.wm,_u_v.
a reflection of human conceptual preferences rather than of anything in the
subject matters we study. Essentially, a practice of factor .Hﬁ_ﬂﬁmnon. has
evolved, again without formal and explicit argument, in which we n_nmn:vo a
factor as that which is in common to those variables that have large positive

TABLE 2.4,
(a) (h)
Simple Structure Independent
Factor Pattern Clusters

Factor Pattern
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regression weights on it. The factor is “*most like'" the variables that increase
most rapidly as the factor score increases. It is unlike the variables with zero
loudings, as these do not vary as the factor varies, and least like those variables
that have large negative regression weights on it (i.e., the variables that decrease
most rapidly as the factor score increases). But for large classes of data the
methods of scoring employed combined with the simple structure criterion tend
to eliminate negative loadings and leave a contrast between large positive load-
ings and zero loadings. The interpreter can then ask what the high-loading group
of variables has in common in order to identify the factor. He or she does not have
to ask what the zero-loading variables have in common, of course. If there are any
large negative loadings, one can usually think of those variables as, in effect,
scored in reverse (extraversion scored as lack of introversion or anxiety scored as
lack of calmness). The task of interpretation seems easier when we just ask what
a given group of variables have in common than when we have to contrast them
with another group of variables. In fact, unfortunately, investigators sometimes
miss the elementary precaution of making sure that variables with zero loadings
on a factor do not alse have the generic property that the high-loading variables
seem to have. This would make nonsense of the proposed interpretation of the
factor. It might seem, then, that zeros in the factor pattern are desired because the
Zero—-nonzero contrast is easy to think about.

It follows from the definition of simple structure that if we have a population
whose correlation matrix can be explained by a factor pattern with a definite
simple structure, it is quite impossible (i.e.. there is a zero probability) that a
sample drawn from that population could be made to yield simple structure by
transforming a given set of estimates in which no factor loadings haye been set
equal to zero. At best we could hope to invent devices that yield an approxima-
tion to simple structure that is "‘good"" in some sense. We might also hope to
find a way to decide when the approximation is *‘good' enough to enable us to
believe that the variables possibly have simple structure in the population, Unfor-
tunately, in the literature, no distinction is made between **simple structure’’ and
“approximate simple structure’’ or between simple structure in the population
and simple structure in the sample, A habit has grown up, with no formal or
explicit basis, of regarding sample loadings less than .3 as “‘near-zero’’ in a
loose definition of simple structure. Simple structure in this loose definition
seems rather too easy to obtain, and investigators often interpret their results as
though they had simple structure when they might be said not to have it at all.

Many devices have been invented for *‘rotation to simple structure’” (i.e,, for
transforming a given estimated factor pattern so that it approximates the defini-
tion of simple structure as closely as it is able to, perhaps not at all closely). Just
about any of these devices are adequate to indicate to us, in combination with
rational thought about the objects of the study, where to postulate zero loadings
in a detailed hypothesis that can be tested by the methods of Chapter 3. It seems
illogical to be content with an approximate simple structure in which some of the
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coefficients in the factor pattern are ‘‘small'’ and others are “'large.”" We either
believe the small coefficients are zero in the population, or we do not. If we do,
we should not get nonzero estimates of the zero coefficients, If we do not, we
should not pretend to be using simple structure.

Essentially, there are four main approaches to the problem of obtaining a
transformation to approximate simple structure. These are (1) graphical methods,
(2) counting methods, (3) simplicity function methods, and (4) target methods,

1. The oldest method involves the drawing of graphs, pairwise plots of the
columns of factor loadings against each other, by human operators and the
selection by eye of new axes for the graphs. This is an extremely complicated art.
Most investigators consider it satisfactorily replaced by methods that can run
themselves off on a computer, thus saving human effort. It does seem, though,
that the results of graphical transformations tend to be considered the standard by
which the results of other methods are judged.

2. The intention behind counting methods is that we count the number of
variables that have a loading less than a given size (say .3) on each factor and
look for a solution that maximizes this number. Because of the geometry of the
problem, originating in the graphical treatments, this count of small values is
known as the hyperplane count (the number of points close enough to a plane in
multidimensional space). However, as carried out in practice, instead of a simple
count of the number of small-enough values, a weight is given to each element
counted that makes the total count a function of the size of the large coefficients
rather than just an integer representing the number of small-enough coefficients.
This seems to constitute a departure from the original principle, according to
which simple structure is a matter of the number of small factor loadings and
surely should be quite independent of the size of the large ones.

3. In the simplicity function methods, the basic problem put to the mathemati-
cians is to define @ quantity that is computed as a function of all nm elements of
the common factor pattern and will vary as we transform the numbers in the
factor pattern, becoming a minimum (or, for some functions, a maximum) at a
set of values of the factor loadings that we would regard as a reasonable approx-
imation ta simple structure. Such a function is called a simplicity function.

On the face of it, it looks impossible to define a usable simplicity function. In
the first place, there are a number of distinct ingredients to the original recipe for
simple structure. It would seem impossible to capture them all in a single mathe-
matical function. In the second place, it would seem incorrect to have a function
that depends on the values of the *‘large’ elements in the transformed pattern,
because the simple structure concept has no implication at all for the sizes of
clements that are thought to be nonzero. Nevertheless, a number of simplicity
functions have been defined that appear to work well in practice. No attempt will

APgr general comments, see Hakstian (19717 and Hakstian and Abel (1974).
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he made here to distinguish the different variations that have been invented, We
Just examine the general idea.

Broadly, a solution to the problem of defining a simplicity function can be
based on the commonsense reflection that a factor pattern matrix that exhibits
simple structure has an extreme distribution of the absolute sizes of its elements,
in which there are many large (positive or negative) values and many small
values with few of intermediate size. Such a spread of the values to the extremes
could be measured by one of the usual measures of variability in descriptive
statistics. A convenient choice would be to square the nm elements of the factor
pattern, because we want the contrast to be between absolute values—very large
versus very small—rather than signed values—large positive versus large nega-
tive. We would then try to find a transformation that maximizes the variance of
the nm squared numbers,

Competing variants on this idea have been developed, and claims made about
the general relative qualities of the results obtained. It seems impossible to find a
simplicity function that is “*better than™" other simplicity functions in the sense
that it always gives results nearer to (a) the known simple structure of artificial
test data or (b) graphical solutions. Because simplicity functions depend on the
irrelevant “‘large’" values of the factor loadings, the solution given by one
simplicity function will differ from the solution given by another simplicity
function and from the *'best’” solution as otherwise judged, by reason of irrele-
vant values of factor loadings that differ from one example to another. It is
doubtful, therefore, if there could be a way to show that one simplicity function
is *'generally best.’' If we use an approximate simple structure only as a guide
for setting up detailed hypotheses, as in Chapter 3, this does not matter,

4, In target methods, (also rather unfortunately described as Procrustean
methods), we suppose we know where the zeros would be in an exact version of
the simple structure, and we choose a transformation to make the loadings
corresponding to the “‘target’” zeros as small as possible. (Usually we minimize
the sum of squares of those numbers.) The main advantage is that the result is
independent of the large loadings. The main disadvantage is that we must first
choose a target. In practice, we can use a target method to improve a result
obtained by one of the other methods, which also yields an automatic decision as
to the location of the exact zeros.

The user of computer programs for ‘“‘rotation to simple structure™ could
obtain some guidance from Table 2.4.2. The main choice is between
“orthogonal rotation,'” yielding a new solution that is also in terms of uncorre-
lated (orthogonal) factors, with a common factor pattern in which the factor
loadings are v—f regression weights and also v—f correlations, and “‘oblique
rotation”’, yielding a common factor pattern (v—f regression weights), a common
factor structure (v—f correlations), and the correlation matrix of the factors (f~f
correlations). The main argument for orthogonal transformation is that factors
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TABLE 2.4,2

(1)

(ii)

(11id)

(1)

(a) Orthogonal Transformations

QUARTIMAX: Simplicity Function o =3 § ¢

q =1 p= )
the sum of the fourth power of loadings. (Maximized)
Tends to "simplify' the rows but not the columns of
the factor pattern--may leave a 'general factor"
with no near-zero loadings. (Due to Carroll, 1953.)

VARIMAX: Simplicity Function

m n n
= 2.2 < 2.2
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the sum across columns of the '"variances' of the
squared loadings in the m columns. &ucmwww.nrm:
method is applied with the loadings "normalized'--
divided by the square root of the communality--to
make each row sum of squares equal unity,(Maximized)
Tends to avoid a "general” factor. (Due to Kailser,

1958.)

TRANSVARIMAX: A weighted sum of s and s is used as

simplicity function., (Due to mn:smmnu. 1962.)
General Comment: VARIMAX is most widely available,
and most popular. In exploratory work, it seems to
suffice.

(b) Oblique Transformatlons
(DIRECT) OBLIMIN Simplicity Function
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(Minimized) We minimize the "covariance' of squared
loadings in distinct columns. Recommended by Hakstian
(1974). (Due to Jennrich and Sampson, 1966.)
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(11) OBLIMAX Simplicity Function
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For each factor in turn, the function is maximized,
then the process is repeated. The quantities wwv.

are not the common factor loadings but are related
to them by a scale transformation. (They are known
as reference-structure loadings.) Not recommended

by Hakstian, 1974. (Due to Saunders, 1961.)

(iii)  BIQUARTIMIN. Simplicity function resenbles 84, Not
recommended by Hakstian. (Due to Carroll, 1957.)

(iv)  MAXPLANE. Originally intended to maximize the
number of load ﬂmu whose absolute value is smaller
than a given number--a counting method (i.e., to
maximize the hyperplane count). In practice, weights
are used as discussed In the text. Not strongly
recommended. (Due to Cattell and Muerle, wwmw.v

(v)  PROMAX A target method. Using, say, VARIMAX, we
obtain an approximate simple structure. The loadings
are raised to a higher power to exaggerate the difference
between the large and small loadings. Then an oblique
transformation is chosen that uses the "powered" loading
matrix as a target. Recommended. (Due to Hendrickson
and White, 1964,)

(vi)  Harris-Kalser oblique transformations: Essentially a
method for restricting the kind of transformation chosen,
Cannot be described here. Certain methods suggested are
recommended by Hakstian. (Due to Harris and Kailser, 1964.)

are principles of classification that should be as independent as possible (i.e.,
uncorrelated). The main argument for oblique transformation is that factors that
are uncorrelated in one population may well be correlated in another, and corre-
lated factors will tend to give invariant v—f regression weights (suitably scaled—
see Chapter 6) from one population to another. We would have the best of all
worlds if a set of variables gave us uncorrelated factors, simply as a matter of
fact, in all the populations we happen to care about, but this cannot be expected.
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2.5. RELATED METHODS

In this section we briefly consider three techniques that bear some relationship to
exploratory factor analysis, namely inverse factor analysis, optimal scaling, and
multidimensional scaling. At least the last two of these topics are major fields of
psychometric theory, and each requires no less than a book-length account to do
it justice. As in the discussion of principal component theory and image theory,
the treatment of these topics here is partial in both senses of the word, being both
incomplete and biased toward a perspective that is essentially that of common
factor analysis.

(a) Inverse Factor Analysis

An extremely confused issue in factor theory concems the notion of **factoring
persons instead of tests™ in the usual context of persons taking tests as the source
of our data. If we think of factor analysis as something we “‘do to™ an (n X n)
matrix of correlations between n tests measured on N persons, and if we think of
sample correlations as mean products of standardized deviations of persons from
their means on two tests, then it is casy to invent “‘inverse’" or “‘obverse’ or
“eonverse' factor analysis as something we would “*do to™" an (N % N) matrix
of “'correlations’’ between N persons measured on # tests. We would immediate-
ly perceive difficulties with such an “‘inverse™ factor analysis. If n tests are
measured in n different sets of units, with a different origins and scales, we
would wonder what the correlation between Smith's and Brown's sets of n scores
would mean. and we would notice that the correlation would be sensitive to
changes of unit, For example, measuring weight in tons versus milligrams,
height in feet versus millimicrons, and length of big toe in inches versus miles
would change the correlations dramatically. In spite of these difficulties, a large
literature has developed on the subject of “factoring persons.'’ Much of it has
been devoted to the question whether the factor loadings obtained from correla-
tions between persons should be in correspondence to their usual factor loadings.
Much too was concerned with the effects on such correspondence of *'taking
out™ or “‘leaving in'' means or of rescaling the variables to comparable units
before computing correlations between persons,

If we do not accept the view that factor analysis is something we do to
correlation matrices and if, specifically, we regard the common factor model as a
special case of latent trait theory, based on the principle of local independence
(see Chapter 7), we may find it difficult to see why the notion of **factoring
persons'* ever arose in the first place. That is, it is fairly easy to understand a
common factor as a latent trait such that in a subpopulation of persons for whom
that trait is a fixed number the correlation between two tests is zero, It is hard to
understand a factor, whose loadings are obtained by analyzing correlations be-
tween persons, as a latent trait such that, in a subpopulation of tests for which
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that trait is a fixed number, the correlation between two persons is zero. Thus,
the main difficulty with the notion of applying the common factor model to a
matrix of ‘‘correlations between persons' would be the logical difficulty of
interpreting the residual covariances as partial covariances, the uniqueness of a
person as the residual variance about the regression of the person on the factors,
and so on. The position taken here is that the common factor model is a statistical
model and not a device that is applicable **inversely’' to “‘correlations’” between
persons. Nor, it seems, has any cogent need to apply the model in this way ever
been demonstrated,

The case is somewhat different with component theory. If we have scores y;,
of N subjects on n measures, which for the moment we suppose to be in raw
score form, we may approximate the scores by sums of products of principal
component weights and principal component scores, The detailed mathematics
of the problem can be presented so as to give the impression that we choose
between first obtaining and operating on sums of products of the scores of pairs
of variables, or sums of products of the scores of pairs of subjects. These
resemble ‘‘correlations between variables' and ‘‘correlations between per-
sons.” We might very loosely describe these procedures as ““factoring tests"
and ‘‘factoring persons,’’ but either is just a device to solve the entire minimiza-
tion problem with convenient arithmetic. It is not to be expected that if we first
transform the scores to deviation measure or to standard measure in the sample
the best-fitting weights and scores will be related to the weights and scores
before rescaling in any simple way. This fact, however, does not seem to be a
problem of any depth or consequence for psychometric theory, Any wish to
obtain a best-fitting representation of a given set of scores will presumably be in
turn motivated by rational research considerations. These in turn, in most cases,
should dictate whether we wish to approximate the scores or their deviations
from the mean or their deviations in standard measure by principal components;
hence the discussions of the effects on the relationship between **factoring tests"’
and **factoring persons'’ of *‘taking out means'' or “‘standardizing’’ do not yet
seem adequately motivated.

The cavalier attitude expressed so far in this section toward problems that
have been taken very seriously by very competent investigators should not deter
the reader from inquiring more deeply into these matters if the nature of his or her
research data would seem to make it necessary. On the other hand, it certainly
seems desirable not to become involved with such problems if it is possible to
avoid them.

The use of measures in a score matrix in which each row consists of devia-
tions of the subject’s scores from his or her own mean over n tests is sometimes
solemnly discussed as ipsative scoring, with the obvious Latin derivation. The
process of converting a score matrix to this form is known as ipsatization,
Usually, to give such a scoring scheme the semblance of rationality, the scores
would first have to be put in standard measure in the sample. The effects of
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ipsatization are not well understood, and it would seem very difficult o develop
proper statistical theory to cover estimation problems for sample data so treated.
There is need for further work, perhaps directed at the question whether we could
ever have any good reason (o ipsatize,

Problems of a rather different kind arise with other n X N data matrices that
we might consider factor analyzing. If, for example, just one test is administered
n times to N subjects, we are free to calculate the correlations between the n
repeated measures and fit the common factor model to the data. If the n udmin-
istrations of the test are all carried out under the same conditions, yielding N time
series, one for each subject, the use of the common factor model would seem
conceplually inappropriate, and we presumably would prefer to use a conven-
tional time-series analysis. If we insist on using common factor analysis, it is
unlikely that we shall be able to interpret the results in terms of common proper-
ties of times of testing, such as early versus late or middle versus early and late.
If, on the other hand, the n repeated measures correspond to n distinet situations
in which the test was administered, it may prove possible to interpret the analysis
in terms of common properties of situations. See Chapter 6 for the analysis of
data consisting of subjects by tests by occasions or situations,

(b) Optimal Scaling

Optimal scaling is one of several names (dual scaling, correspondence analysis)
that have been given to certain applications of principal component analysis to
multicategory data. If N subjects respond to n multicategory items, the responses
can be coded in a data matrix of N rows and p columns, where p is the total
number of categories in the a items, We record a unity in the column correspond-
ing to the category of each item that each subject checks and zeros in all other
columns. If the respondent is forced to choose a category in cach item, each row
of the data matrix must contain just n unities, one for each item. As a result, there
is redundancy of information in the matrix. If we know the entries in all but one
category of each item, then we know the entry in the remaining category, The
object of optimal scaling is to choose weights for the item categories and scores
for the subjects that are optimal in a mathematically well-defined sense of the
word, A number of criteria have been proposed, all of which yield the same
mathematical answer, which closely resembles principal component analysis.
We write y,, for the entry corresponding to the /th category of the jth item. If the
respondent checks this category, then y;, = I. Consequently y, = 0 for every
other category, k, of the item. We define a total score 5, weights for each item
category wy, and item scores 5, by writing

g M MS....E (2.5.1)

and
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5y = M..U Wty J=Le...n (2.5.2)

(In fact, 5, is always the same as the weight assigned to the category checked, and
§ is the sum of the weights of all the categories checked,) We choose the weights
to maximize the sum of the squares of correlations between the item scores 5, and
the total score 5. This is analogous to Hotelling's original treatment of principal
components. Such alternatives as choosing the weights to maximize the ratio of
the variance of the total score to the sum of the n variances of the item scores
yield the same answer, These and certain other equivalent criteria are essentially
designed to maximize the relationship between the total score and the item scores
in some recognizable sense.

The optimal weights in (2,5.1) are regression weights of the (dependent)
optimal score § on the p (independent) item cutegories, They are indeterminate
because the independent variables contain redundant information, This means
that further arbitrary restrictions need to be placed on the weights to determine
them uniquely, Once they are determined, under any set of restrictions, we can,
as in principal component analysis, compute a converse regression of the item
categories on the optimal scores. These are invariant under arbitrary choices of
the optimal weights and can be interpreted very much as in common factor
analysis. In the practice of optimal scaling, the usual procedure is to obtain and
interpret some set of optimal weights. From the factor-analytic point of view it
seems preferable to obtuin the regressions of the item categories on the optimal
scores rather than the regressions of the optimal scores on the item categories.”

(e) Multidimensional Scaling

Multidimensional scaling is the generic term for a family of methods for repre-
senting dissimilarities between stimuli by distances in a multidimensional space.
Because it is possible to think of a correlation coefficient as measuring the
similarity of two tests, it may seem reasonable to take some function of the
correlation coefficients chosen to increase as the correlation decreases to measure
the dissimilarities of a set of n tests and to use multidimensional scaling as an
alternative to common factor analysis to provide an account of the relations
between them.

Just as the position of a point in two dimensions can be represented by its
coordinates, x,, x,, measured on two axes at right angles, so an imagined point
in m dimensions can be represented by its coordinates, x,, . . . , X,,, measured on
m axes at right angles. By an extension of Pythagoras’ theorem, given the
coordinates of any two points in an m-dimensional space, we can calculate the
square of the distance between the points as the sum of the squares of the m

SSee Nishisato (1980) for a general account of optimal sculing, Fot i technical account of these
remarks, see McDuonald (1983).
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differences between their coordinates. The converse problem is more difficult,
but it can be solved.

In multidimensional scaling, given the squared distances between members of
a set of n points in m-dimensional space, we can find a set of m coordinate values
for each of the n points that is consistent with those squared distances. The
obtained coordinates are subject to indeterminacies corresponding to both a
rotation of the coordinate axes and a movement in space of the origin of the
system of axes,

In metric multidimensional scaling we assume that a set of given dis-
similarities measures the distances between the objects (tests, stimuli) to be
mapped into a multidimensional space. The obvious difficulty with this assump-
tion is that it can easily contradict itself, Suppose one investigator uses the
quantity $(1 — r) where 7 is the correlation coefficient between tests as a mea-
sure of their dissimilarity, ranging from zero to unity, whereas another
uses ~ log {#(1 + r)}, ranging from zero to infinity. The two measures of dis-
similarity cannot be taken as measures of the same distance.

Nonmetric multidimensional scaling was introduced to avoid the self-contra-
dictory assumption that distances are measured by dissimilarities, It is possible to
avoid doing any arithmetic on the numbers representing dissimilarities by re-
gressing the distances in the model on the observed dissimilurities, using a
monotone regression function, This is a nondecreasing function of the indepen-
dent variable that gives a least-squares best fit to a scatter diagram, It takes the
form of a set of joined-up straight-line segments (parts of a polygon) that are
either horizontal or sloping upward from left to right in the graph of the data,
Arithmetic algorithms have been developed for the two steps of nonmetric multi-
dimensional scaling, namely: (1) given a set of guessed coordinates of the ob-
jects, yielding a corresponding set of guessed distances, to regress the distances
on the data using a monotone regression function; and (2) to move to a new set of
coordinates ¢hosen to reduce the residuals of the distances about their regressions
on the dissimilarities. At the completion of a series of repetitions of these steps,
we should have a set of coordinates for the objects that minimize the residuals of
the distances about their regressions on the data. It is an unusual and interesting
feature of these methods that the hypothetical quantities in the model are treated
as dependent variables and regressed on the data as independent variables in
order to avoid doing arithmetic on the observations.®

For our purposes, the important question concerns the relation between com-
mon factor analysis and nonmetric multidimensional scaling applied to quantities
derived from correlations between tests. There is no direct mathematical rela-
tionship. In applications, users of nonmetric multidimensional scaling usually
abtain an account of data in terms of fewer dimensions than do factor analysts,

“For a general account of multidimensional sealing, see Kruskal & Wish (1978).

2.8. MATHEMATICAL NOTES ON CHAPTER 2 93

This seems partly due to choices open to the investigator. A user wishing to
avoid severe rotation problems in multidimensional space may deliberately
choose a coordinate space of at most two dimensions to contain the data, It also
seems partly due to the fact that multidimensional scaling allows a translation of
origin that can commonly be used to eliminate one of the dimensions needed by
the common factor model. Some reduction in the dimensionality of the data may
also be due to the nonmetric properties of the former method. Allowing for these
differences, it is possible to find a degree of consistency between these alter-
native analyses of the same data.’

Instead of using correlation coefficients with their built-in linear measurement
of the relations between tests, it is possible to develop a nonmetric counterpart of
principal component analysis, in which the monotone regression function is used
1o regress a weighted sum of components on the data.® Such a method recovers
known parameters provided that the data contain only a small amount of unigue
variance, A nonmetric analog of the common factor model would presumably be
able to cope with large amounts of unique variance, but it does not seem possible
to develop a common factor model without doing arithmetic on the data, so such
a model appears to be quite a challenge for research!

26. MATHEMATICAL NOTES ON CHAPTER 29

(a) Notes on Section 2.2

We write A, of order (n % ), for the usual sample correlation matrix, computed
from a sample of size N, (It is actually better to think of this and the matrix fitted
to it as covariance matrices.) In the unrestricted common factor model, we wish
to estimate F and U under the hypothesis that

R =FF' + U?

for F of order (n % m), with no further specification on the elements of F,

7An unpublished study by McDonald and Chan reveals close similarities in configurations of
common factor loadings and configurations of points in @ nonmetric multidimensional scaling analy-
sis of functions of the correlations, except for the loss of a dimension due o movement of the origin
in multidimensional scaling. See, for example, Schlesinger dnd Guitman (1969) for an alternative
view of these mutters.

SKruskal and Shepard (1974),

“This section may be omitied, but it may help. so try it

General Note: Again all of the material in this chapter is very well known, and again Gorsuch
(1974), Rummel (1970), and Mulaik (1972) are recommended for further reading. The analyses were
done on computer programs written by the suthor,
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In the method of least squares we choose F and U? to minimize the quantity

Q = Tr {(A = R)¥} (2.6.1)
that is, the quantity
Q =Tr {{A = FF' = U% (A - FF' - U%)}, (2,6.2)

By differential calculus, omitted, we find that conditions for  to be a minimum
are

(A —=FF = U)F =0 (2.6.3)
and
Diag (A = FF' = U?) =0 (2.6.4)

This is a system of simultaneous nonlinear equations, for which a solution cannot
be obtained in closed form. That is, we cannot obtain expressions for F and U? in
terms of elements of A, However, for any given value of U?, we can solve
(2.6.3) for F using the mathematics of principal component theory, rewriting it
as

(A = U3F = FF'F (2.6.5)

and choosing to impose a condition that F'F be a diagonal matrix. Conversely,
for any given value of F, we can solve (2,6.4) for U2, giving the *‘obvious’’
result

U? = Diag (A — FF'} (2.6.6)

In practice, therefore, there have been two main approaches to the numerical
solution of the least-squares estimation problem. In one, we use a numerical
algorithm to find values of U? that successively approach nearer and nearer to the
minimizing values, and for each of these we solve (2.6.5) by the methods of
principal component theory. Methods for finding successively improved values
of U? range from ad hoc algorithms (such as one due to Thomson 1934) that
"seem Lo work™" (o applications of modern Newton or quasi-Newton methods. In
the other method, we use a numerical algorithm to find values of F that suc-
cessively approach the mintmizing values, and for each of these we obtain U2 by
(2.6.6), The best known version of this method is Harman's MINRES. % We can
also minimize Q directly with respect to both F and U?,

We turn now to maximum likelihoad estimation. Not enough information has
been given in Appendix Al to enable us to derive this method from basic
principles, and no attempt will be made to do so.

We shall accept as given a result obtained by Lawley (1940) that under the
normal distribution assumption the quantity

5ee Harman and Fukuda (1966),

==
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A= N[Tr {AR~'} = log [AR~'[=n) (2.6.7)

has its minimum at the point where the likelihood of our sample has a maximum,
and A is distributed asymptotically as N increases like chi-square with
df = H(n = m)? = (n + m)}. Whether the normal distribution assumption is
true or not, the quantity A is necessarily nonnegative, It is "large’” when the fit
of R to A is poor and **small”” when the fit is good. It is zero only if we are able
to obtain R = FF' + U? that exactly equals our sample A, for then AR~! = I,
and it is easily seen that Tr{I} = nand [I] = 1, so log [I| = 0. (The reader may
recognize that the quantity A is of the form x = log x — L. It can be shown that
such a quantity is essentially positive, becoming zero at x = 1)

The conditions for a minimum of A with respect to F and U? may be written as

R-YR - AR"'F=0 (2.6.8)
and
Diag {R- (R =A)R"'} = 0. (2.6.9)

Like the corresponding equations (2.6.3) and (2.6,4), these are simultaneous
nonlinear equations that require a numerical algorithm for their solution, Again
we can find numerical methods that yield a sequence of improved values of U?,
for each of which we obtain a solution to (2.6.8) in terms of the principal
components of a certain matrix (usually, of U~'(A = U)U~!, but this has
certain disadvantages). We cannot, in this case, solve (2.6.9) in closed form for
U2, given F. Nevertheless, methods that assume (2.6.6) to be true for F other
than the required minimizing value do work quite well.

Very interestingly, it can be shown that the LRC [, given in (2.6.7), can also
be expressed as

A = =N log|R,| (2.6.10)

where R, is the correlation matrix (not the covariance) of the residuals. In trying
to maximize the likelihood, assuming normality, we are trying to maximize the
determinant of the residual correlation matrix.



