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tions, error variances, and so on, avoiding the technicalities :nom_nm for
complex items, In the final section it would be minimally sufficient for
the student to accept (14.20) as the expression for subtest convergent and
discriminant validities, as illustrated in Table 14.6.

Comparing Populations
END NOTES

The material in this chapter is based on McDonald (1982b). A very similar
account is in McDonald (1997a). Other approaches to multidimensional
item response theory are to be found in the literature, A treatment based
on direction vectors has been given by Reckase (1985). See Reckase (1997)
for a relatively nontechnical account. It is my belief, as should be clear,
that independent clusters provide the best basis for applications, but fur-
ther work could change the picture.

1. These data are used by kind permission of the American College Testing program,
2. The NOHARM program, included ,_,a .::.. set on diskette available from _..swﬁﬁsnn_.m_.__ﬁsa

Ak, NS el B R b Throughout the earlier chapters the phrase populations of interest has been
3 HM wmwﬁmﬂmu:wa used to point to the fact that many of the indices and parameters dealt

o with are accidental parameters of the population sampled. Every respond-
ent can be classified as belonging to an indefinite number of populations.
There is that most obvious identification of individuals by gender. There
are less obvious but commonly employed classifications (by self or imposed
by others) in terms of “ethnic group"—those complex results of some
thousands of years of cultural and political history marked by expansion,
invasion, infiltration, conflict, and conquest across the surface of our planet
that may give different citizens of a modern nationstate a chosen or im-
posed identity distinct from their citizenship. There are attempted classi-
fications by “race," from the infamous imposed classifications that have
marked segregationist societies to identities chosen by members of a disem-
powered group for whom racial pride may function positively in a move-
ment toward empowerment. There are possible classifications on such
cultural bases as religion, and classifications by socioeconomic status or
educational level. Ever finer classifications can be obtained if we select
groups by their score on one test to study their responses to others, until
the individual is the intersection of so many properties that the individual
is a population containing just one member.

Test theory, developed primarily in the context of cognitive tests, has
been centrally motivated by educational applications. Because a major use
of tests of abilities/aptitudes has been the selection of individuals for ad-
mission to college and university programs, and, in some countries, to
selective high schools, the most obvious populations of interest are those
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whose existence has been given recognition in laws concerning discrimi-
nation. Although tests alone cannot be used to redress the wrongs created
by discriminatdon and by the enormous inequalities of educational and
economic opportunity that characterize most modern states, there is a
plain duty on the part of test developers to ensure that the tests themselves
are not sources of discrimination and inequity. Accordingly, there has been
a considerable amount of effort in work on test theory to study the con-
ditions under which a test score on individuals from distinct populations
(a) measures the same attribute and (b) gives an unbiased estimate of the
relative standing of the individuals on that attribute, Research applications
of noncognitive tests—measures of values and attitudes, for example—also
require a technology to check whether the test measures the same attribute
in populations of interest to the investigaton, and, if so, whether it gives
an unbiased estimate of it. Thus, it is possible for men and women to
perceive the same set of attitude items sufficiently differently to raise the
question whether “the same” attribute is being measured in both genders.
The main illustration in this chapter is a study of just this possibility.

In classical test theory, as we have seen, indexes such as reliability co-
efficients, and item parameters such as item difficulty measured by pro-
portion passing, or item~test correlations, are incidental properties of the
population sampled. It is considered to be an axiom of item response
theory that, in contrast, the item parameters are invariant across popula-
tions of interest, provided that an appropriate common scale of the latent
traits is adopted. This axiom of fmvariance is a mathematical tautology. It
has sometimes been misunderstood to imply that if, say, a unidimensional
item response model fits two populations of interest, the parameters must
be the same in both populations (when the latent trait is measured on a
common scale). What the axiom of invariance actually means is that if the
item parameters from the two groups cannot be rescaled so as to coincide,
we can always introduce further latent traits so that they do. This is trivially
true, because we can always use population membership as a “latent trait™
and make a model whose parameters are tautologically invariant. In ap-
plications, it is not mathematically guaranteed—for a model with a fixed
number of latent traits—that the item parameters can agree across popu-
lations. If they do not, we cannot strictly claim that the items measure the
same attribute in these populations; what they have in common may be
at least slightly different.

In a comparison of two populations, it has become an accepted con-
vention to identify one population as the reference group, and the other as
a focal group. “Reference group” is a synonym for what we have called the
calibration group. As before, it determines the metric of the latent traits,
In the sociopolitical context of the United States, for gender studies it is
customary to choose males as the reference group; for education, it is

———
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common to find comparisons of European Americans with African Ameri-
cans, Hispanic Americans, Asian Americans, and/or Native Americans,
with the European Americans as the reference group. It is perhaps futile
to discuss here the possible biases that may determine such a choice,
because a reference group generally must be chosen to determine the
metric on which the item parameters are calibrated. It is enough 1o rec-
ognize that the choice is arbitrary, and is inconsequential from a meas-
urement perspective.

In most treatments of this type of problem, initially each latent trait is
scaled to be standardized—separately—in both reference and focal groups.
If in fact the items will fit the same model with the same item parameters
when the scale of the focal group is changed to standard score units taken
from the reference group, then there are simple linear relationships be-
tween the sets of item parameters from which the change of scale can be
determined. Corresponding approximate relationships will be revealed in
estimates of these parameters from samples. If the two sets of item pa-
rameters cannot be made to agree by a change of scale, this fact will be
revealed in departures of the item parameters from the expected linear
relationships. Coefficients of congruence (agreement) between the sets of item
parameters can be computed. As we show later, if the departures from a
linear correspondence are sufficiently great and, accordingly, the coeffi-
cients of congruence are not large enough, we should not suppose that
the items measure the same attribute in both groups.

In applications it may happen that a number of the items have parame-
ters that are lincarly related, and can be supposed to measure the same
latent trait or traits, whereas some do not. It has become customary to say
(somewhat redundantly) that if a binary item gives a different probability
of its keyed response for subjects of the same ability in the reference and
focal groups, the item shows differential item functioning (DIF). ("DIF" is
more pronounceable than “DF"), For a more general definition of DIF,
we say that a (quantitative or binary) item shows DIF if it gives a different
mean response for examinees in different groups with the same value of
the atiribute (ability, attitude, personality trait, etc.). The concept of dif-
ferential item functioning requires enough items to determine “the” at-
tribute—that is, enough items that do not exhibit DIF—but this is probably
not a very restrictive condition in applications. A necessary and sufficient
condition for an item not to show DIF is that its item response function
should be the same in the relevant populations. Recent research has pro-
vided a number of nonparametric devices intended to detect and evaluate
DIF, using the score on a subset of the items as a substitute for the attribute.*
Partly because these methods are rather technical, and have not yet been
carefully evaluated, and partly because they do not easily fit our framework,
we consider a direct method that applies classical factor-analytic concepts
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to the problem. This is the natural extension of the treatment of factor
and item response models in previous chapters. The direct method also
has a number of advantages that the nonparametric devices lack.

The next sections, accordingly, describe methods based on the classical
wreatment of factorial congruence that have the following properties:

1. They are applicable, in essentially the same way, 1o both quantitative
and binary responses.

92, They can be applied equally to unidimensional and multidimensional
data.

3. They provide a direct assessment of the amount of DIF in one or
more items, and, more generally, of the agreement (congruence) of the
parameters of all the items.

4, The analysis distinguishes three distinct types of DIF, namely, (a)
differential item difficulty (known in the DIF literature as uniform DIF),
(b) differential item discriminating power (referred to as nonuniform DIF},
and (c) the effect of differential item dimensionality on an approximating
model of lower dimensionality. (At the time of writing, researchers using
item response models commonly fit unidimensional models to multidi-
mensional data, although there is no good reason for this practice.)

5. Given the nature of the DIF, as in the previous point, we may hope
to examine the item for the substantive cause of differential functioning,

6. The analysis yields an understandable assessment of the effect of one
or more differentially functioning items in the set on the relative test score
obtained when we exclude/include those items. That is, we can estimate
the extent to which the test score may give a statistically biased estimate
of the attribute, and therefore a judgment that is biased in a number of
sociopolitical or legal senses,

7. The method provides an estimate of the mean and variance of the
trait for the focal group in the metric of the reference group.

Taken together, these seven properties allow the test developer to make
rational, substantively based decisions as to how to deal with the differen-
tially functioning items, and how to develop further items.’

It is convenient to develop the procedure by example, carrying through
a fairly detailed analysis of a paradigm case. In the next section we consider
a unidimensional and a multidimensional linear model for quantitative
responses, and the following section covers counterpart nonlinear unidi-
mensional and multidimensional models for binary responses. A single
data set is used to illustrate these developments, It is easily seen how these
procedures may be applied more generally. For definiteness, and in line
with the example to be used, we suppose that the populations of interest
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are identified by gender, with males as the reference group and females
as the focal group, and accordingly use m and f as identifying subscripts.

QUANTITATIVE RESPONSES

Suppose we have m items yielding quantitative item scores X, . . ., X, from
a random respondent, A likely source is (integer) Likert scores for or-
dered-category responses. We assume we may fit a linear common factor
model to sampled values by normal theory, to a sufficiently good approxi-
mation. To identify the populations we attach a superscript m or f, writing
Xm and X for the jth item score from the male and female populations,
respectively. Suppose for the present that the items form a unidimen-
sional/homogeneous se, fitting the simple Spearman single-factor model
in each population, We write the model as

.x..m_.__ = _._.n__; o+ w.sm_.;m”___ + m..n_a. Gm.uwv
and
X0 = pt 4 AOF, + ED, (15.1b)

Here p'™ and p' are the item means in each group—counterparts of item
“difficulty”—and A™ and A are item factor loadings—counterparts of
item “discrimination,” whereas £, and F are the common factor/latent
trait in each population, and Ef™ and E is the unique part of each item
response, corresponding to the idiosyncratic property of the item. As be-
fore, we assume that the unique parts of the item responses are mutually
uncorrelated.

The linear item response functions are the regression functions, given by

LU, = o) =0 + 4, (1522

and

LIXPIE, = i = u® + AOf, (15.2b)

These functions are separately identified if we fix the scale by fixing the
mean and variance of F, and of f in their respective populations, Ordi-
narily we standardize both, setting means 1o zero and variances to unity.

Consider the items of the Illinois Rape Myth Acceptance Scale, listed
inn Table 15.1.1 The responses are¢ on a 7-point Likert scale, from strongly
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TABLE 15.1
Illinois Rape Myth Acceptance Scale (Items Reordered)

1. When women talk and act sexy, they are Inviting rape.

2, When a woman is raped, she usually did something careless 1o put herself in that situation,

3, Any woman who teases a man sexually and doesn’t finish what she started realistically
deserves anything she gets.

4. Many rapes happen because women lead men on.

6. In some rape cases, the woman actually wanted it to happen.

7. Even though the woman may call it rape, she probably enjoyed it. .

0, When a woman allows petting to get 1o a certain point, she is implicitly agreeing to have
SEX.

11, If & woman is raped, often it's because she didn’t say "no" clearly enough.

12, Women tend 1o exaggerate how rape affects them,

16, In any rape case one would have to question whether the vietim is promiscuous or has
a had reputation. o

18, Many so-called rape victims are actually women who had sex and “changed their minds

alierward,

1

. Men don't usually intend to force sex on a woman, hut sometimes they get oo sexually

carried away.
13, When men rape, it is because of their strong desire for sex. .
14. 1t is just part of human nawre for men to ke sex from women who let their guard

down,

=

8, If a woman doesn’t physically fight back, you can't really say that it was a rape.
9, A rape probably didn't happen if the woman has no bruises or marks.
19, 1f a husband pays all the bills, he has a right to sex with his wife whenever he wants,

15, A rapist s more likely to be Black or Hispanic than White,
17. Rape mainly occurs on the "bad” side of town.

disagree = 1 10 strongly agree = 7. The items have the character of beliefs
that can be regarded as myths, in the sense that they may be widely held,
but not on rational/evidential grounds, and they represent the cogni-
tive/perceptual component of an attitude. It is possible’ that acceptance
of these statements serves distinct psychological functions for men and
women—ifor the former, rationalizing/legitimating offensive behavior, and
for the latter, denying vulnerability. Apart from conventional considera-
tions, there is here an additional substantive reason for making the male
population the reference group, namely, that a primary concern of re-
search on rape myths is their specific predictive function for the behavior
of males. The 19 items in the scale were selected to represent 19 subscales,
each of five items, which had been very carefully constructed to reflect
recognizably distinct facets of this false-belief/ attitude complex. An exami-
nation of the item contents suggests a multidimensional structure, but for
the first analysis we treat the data as unidimensional.
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Data are available from N = 368 men and N = 368 women. Analyses in
this and the next section employ the COSAN program. Table 15.2 gives
means and variances of the item scores, and maximum likelihood (ML)
factor loadings from the item covariance matrices. The Spearman model
gives chissquares (152 df) respectively of 344.05 for the male and 350.17
for the female samples, with RMSEAs both .059.

If the item parameters differ between groups only because of the choice
of metric, then f, and f in (15.2) are related by the scale transformation

fi=Hat 6 (15.3a)
with inverse transformation
fo = /B f = (e/B). (15.3b)
It then follows that
KA = ™, (15.4a)
and
O+ AP =pm,  j=1,....p (15.4b)
TABLE 15.2

Unidimensional Quantitative Responses

Hew u G a0 @ A A A me Ah

1 288 3.01 1.87 187 113 088 296 110 =08 A3
2 812 en 282 227 085 077 828 098 =16 =15
K 218 181 143 086 079 0556 211 0.69 02 10
| 899 292 260 269 112 101 386 128 =07 =16
G 801 251 211 291 089 079 310 100 =09 ~-01
7 169 274 1,22 208 062 030 159 037 A0 24
10 297 128 186 042 114 086 295 108 04 05
11 252 2.08 177 102 091 068 262 086 =10 05
12 22 116 153 0835 088 058 226 074 =01 R
16 8.68 299 234 189 095 086 342 109 21 -14
18 340 282 250 158 105 089 861 112 =21 -09
] 424 228 547 187 067 074 439 093 ~15 -26
14 3901 358 279 321 0B85 060 354 0.7 A7 09
14 239 235 1.89 181 076 044 244 055 =05 b 1|
8 2,18 232 146 189 073 050 208 063 05 A1
9 L72 340 125 254 047 022 152 028 .20 19
19 192 192 113 128 093 015 1,82 019 60 b5d
15 236 231 1.89 222 051 015 208 019 28 A1
17 22¢ 192 167 025 035 032 206 040 A8 =05
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By (15.4a), if the item parameters differ only because they are referred to
the origin and unit determined by their own group, then in a graph of
the loadings for the female group against the loadings for the male group,
the points should lie on a straight line through the origin whose slope is
k. Similarly, by (15.4b), in a graph of the differences in the means, g™ -
W, against the loadings in the female group, the points should lie on a
straight line through the origin whose slope is <. In graphs from sample
data, there will be departures from the straight line due to sampling errors,
and possibly departures due to differential functioning of some of the
items. In the extreme, we might find a scatter of points about the lines
suggesting actual overall failure of congruence—failure of agreement of
at least a reasonable number of the item parameters. Without any more
sophisticated technology, but with experience, we could identify differen-
tially functioning items fairly successfully as points lying too far from a
best-fitting straight line. As an exercise, the student is advised to plot these
graphs, and make tentative judgments as to which items depart most from
the expected straight line.

For a more careful procedure than mere inspection, we can carry out
the following calculations: An estimate of the multiplier k from sample
factor loadings given by

k= [Z A™AM/[Z A% (15.5)
minimizes the gquantity
Bho=I (A" = k) (15.6)
and an estimate of the additive constant ¢ given by
o= [Z (™ - WMAPL/(E A (15.7)
minimizes the quantity
g =I (W - uP - ) (15.8)

This chooses a rescaling that makes the parameters as close as possible,
when measured by a sum of squares of differences. The summation can
be taken over all the items or over a subset believed to be free from DIF.
They are easily if tediously computed by hand, or simple computer pro-
grams can be applied. In the example, the estimate of k is 1.261, and that
of ¢is 1.246.
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We note that relative to the zero mean and unit variance assigned to
the male group as reference population, the mean and variance of the
trait in the female group are, respectively, =¢/k and 1/K. In our example,
the mean of the latent trait in the female group is =1.246/1.261= ~.988, and
its variance is 1/K = .629. That is, the female group is both well below the
male group on the average, and less diverse in their rape myth acceptance,
in (male) standard score units. This is to be expected on substantive grounds.

The rescaled parameters from the female population, given by

A = E&: (15.9a)
and
Bi" = ui 4 AN, (15.9h)

may be compared to A and W™, respectively. In our example, these and
the resulting differences are given in the last four columns of Table 15.2.
Simple inspection of the listed differences suggests that relative to the
remainder of the items, item 19 has large differences in both loading and
itemn mean, and the same is true, although less clearly, for item 15. Item
13 shows a notable difference in mean but not in loadings. Note also the
positions of these items on the graphs.

The analysis gives standard errors for the item parameters, from which
we can obtain approximate confidence bounds on the differences between
them. We might regard confidence bounds that do not include zero as
indicating significant DIF. But note that for a sufficiently small sample size,
no item will show significant DIF, whereas for a sufficiently large sample
size all items will; that is, no subset of items could be thought of as related
by a scale change. The important question is the amount of the difference,
not its technical *significance.” The SEs of the loadings are all very close
to .05 in both groups, and the SEs of the mean parameters are given by
the item SDs divided by root sample size. These SDs, for the male group,
range from 1.07 to 1.84, giving a mean SE on the order of .07. It should
be an acceptable heuristic device to take a common set of approximate
confidence bounds of .14 (= 2 x .05 x 21/%) for the difference in loadings
between the groups after rescaling, and £2 (=2 x .07 x 2V%), for the
difference in means. From Table 15.2 we see that four items appear to
have nonnegligible and "significant” differential slope parameters—in or-
der, 19, with difference (785 = .194 = 561; 15, with difference .314; 7, with
difference .244; and 5, with difference =226, Three appear to have non-
negligible and “significant” differential mean parameters—in order, 19,
with difference .60; 18, with difference ,37; and 15, with difference .28—also
possibly 16 and 18. (Tabulated values have been rounded.)
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Burt's coefficient of factorial congruence
5= (£ ﬁ.a?“:u\:M ur“__iAH P“_...Ju:_g (15.10a)

(a “"correlation coefficient not corrected for means") here measures the
closeness of the loadings to agreement, without rescaling, and equals unity
if and only if ¢, = 0 exactly. Itis natural to define a corresponding coefficient
of congruence for the difference in mean parameters i — i by

&= [z nt.":; I FH._J?“:H\_‘._M At%i l _-..“_Ja:M w.."__._ﬁ _é. A“w.ﬁccu
This measures the closeness of the item means to agreement, without
rescaling, and equals unity if and only if ¢, = 0. Again the swmmation can be
over all the items or over a subset thought to be free of DIF, In our example,
the congruence coefficients are g, = 973, g, = 968, for all the items, and g,
=991, g, =.990, with the suspect items, 19, 15, 13, 7, and 5, omitted,

If a number of the items are judged to have nonnegligible DIF, the
effect of excluding/including these items can be assessed by comparing
the relative test score characteristic curves for the retained items with that
for the full set. Let [X;, . . . ,X,) be any subset of the item scores. The relative
test-score characteristic functions for the two groups are given in the metric
of the male group, by

LM, By = fo) = o+ P (15.11a)
and
EIM ) Fo= f) = W+ Mk (15.11b)

where M, is the mean score on the selected items, |, and A, are means
of the parameters for the male group over the rselected items, and |,
Ay are means of the rescaled parameters for the female group. Noncoin-
cidence of these functions is a precise specification of what we call (in the
linear model) differential test score functioning (DTF). In our example we
examine the effect of omitting versus retaining items 5, 7, 13, 15, and 19
on the relative testscore information functions, The expected values of
the means of the item scores, as a function of the latent trait, for the full
set, are

LM, | f) = 2753 + 815/

for the male group, and
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M, | f) = 2,608 + 749,

for the female group, whereas for the reduced set they are
LM, | f) = 2,727 + 864f

for the male group, and
ZiM, | f1 = 2732 + .B40f

for the female group. In the range =3 to 3, the differences appear negli-
gible. In sociopolitically significant applications it might nevertheless not
be a sufficient reason to retain differentially functioning items that they
have a negligible effect on the relationship between the test score and the
attribute being measured, There is a cogent argument that justice should
not only be done but should be clearly seen to be done.

We have seen that there is no mathematical reason why a unidimensional
item response model—or model of fixed dimensionality—must have in-
variant item parameters. It is perfectly possible to find items with either
loadings or means that cannot be brought into coincidence by rescaling
the focal group to the units of the reference group. It might be conjectured,
loosely speaking, that if an item shows DIF it must be because the item
measures something in addition to the intended attribute in one of the
populations but not the other.

Such conjectures require care in interpreting them. Using the methods
of Chapters 9 and 14, it should be possible to determine whether in fact
two populations require distinct models with different numbers of latent
traits. If the mistake is made of fitting a unidimensional model to data
that are in fact multidimensional, the parameters in the appropriate mul-
tidimensional models may be invariant with appropriate scaling, whereas
the unidimensional approximation shows DIF, Thus DIF can consist of
actual differences in loadings or item means in a unidimensional model
or of apparent differences that result from the use of a unidimensional
approximation to multidimensional data.

If the conjecture is that DIF is due to additional “dimensions” measured
by the aberrant items, in general such “dimensions” cannot be interpreted
strictly as latent traits. In the case of a single item, if we postulate that it
measures “something in addition” to the recognized latent trait in one of
the groups, the “something in addition” has the character of an itemsspecific
component in that group. This is included in the item’s unique component,
and is not an additional dimension as ordinarily understood; that is, it is
not a common factor/latent trait.
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In the case of quantitative responses, a population-specific component
produces a difference between populations in the unique variance of the
item. But it will not induce, and hence cannot explain, a change in the
slope vwgnpnqlngn common factor loading. (In a standardized factor
model, the unique variance is the unit complement of the communality
and a change in unique variance changes the loadings, but not, as here,
when the response is unstandardized.) If the conjecture is that there is a
difference between populations in the mean of the unique component of
the item, this is merely a tautological account of the irreducible differ-
ence—not removed by rescaling—in the mean parameter, The same is
wrue for more than one item, if each is postulated to measure “something
in addition” that is specific to itself. (There has been considerable confu-
sion on this point in the literature on differential item functioning, on
the part of researchers who are possibly not familiar with the formal prop-
erties of the common factor model.)

On the other hand, one way—although not the only one—in which
differences in slopes could arise is indeed by fitting an approximating
unidimensional model to data in which there is cither a difference in
dimensionality—in the number of latent traits—between groups, or distinct
correlations between the traits. (And, to repeat, it still seems to be a com-
mon, although unfortunate practice, to approximate multidimensional
data with a unidimensional model in applications of nonlinear item re-
sponse models.) If, for example, items 19, 15, 13, 7, and 5 happen to
define a separate factor in the female group, but not in the male group,
or if there is such a factor in both groups, with a lower correlation for
females between it and the factor defined by the complementary subset,
this might account for the reduction in their loadings in the unidimen-
sional approximation. It could also account for differences in the item
means if these were related appropriately to the loadings. Such an analysis
would give a nonvacuous account of DIF in terms of additional dimensions,
that is, additional latent traits,

We note, however, that it would be inappropriate and usually ineffective
to ignore substantive considerations, choosing to fit a two-dimensional
structure with a second latent trait defined by the differentially functioning
items, Thus, in the present example, items 19, 15, 13, 7, and 5 do not
have mean differences proportional to their loadings. And they should, if
they correspond to a second factor, Also, an examination of their item
stems does not suggest that they share a distinct conceptual basis. It turns
out that fitting this model (a) does not improve fit and (b) does not reduce
the differences between parameters of these items.

When irreducible differences are found between item parameters, the
possibility remains that (some) differences are due to fitting the unidi-
mensional approximation to data whose substantive character requires a
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multidimensional structure, and that the differences may vanish or at least
change their pattern when an appropriate model is used. Besides, on
general grounds we need methods for comparing populations and check-
ing for DIF that apply to a multidimensional structure.

It is a very straightforward mathematical task to write down analogues
of equations (15.1) through (15.11) for the case of two groups having »
common factors, replacing (15.3) by a more general transformation, (It
is also possible in principle to apply and slightly extend classical treatments
of factorial congruence transformations to cases with unequal numbers of
latent traits). However, such generality does not seem well motivated in
the present applications. Rather, it is reasonable to restrict the transfor-
mation of metric to separate scale transformations, one for each trait,
Consequently, we do not require a more general formulation, but simply
apply (15.1) through (15.11) 1o each latent trait in turn. Note that such
transformations will not alter the correlations between the traits.

A careful study of the nineteen item stems in Table 15.1 suggests the
application of a more general madel for the function of these myths, based
on well-known mechanisims of blame, rationalization, and denial, to yield
a four-factor model, namely:

I. Blame the victim: items 1, 2, 3, 4, 6, 7, 10, 11, 12, 16, 18,
1I. Excuse the offender: items 5, 13, 14.
I11. Deny it is an offense: items 8, 9, 19.

IV. Deny it happens "here" (the respondent's usual location): items 15,
17.

(Note that the items in Table 15.1 have been reordered in the tables to
group as shown.) The results from fitting this model to the two groups
are given in Table 15.8. Because the model contains no factorially complex
items, it is convenient to write the parameters in single columns, rather
than setting them out in the form of conventional 19 X 4 factor patterns.
The four-factor model gives chi-squares (146 df) respectively of 241.17 and
296,32 for male and female groups, clearly fitting better than the
unidimensional results. The improvement is greater in the male group.
Applying (15.5) and (15.7) separately for each factor gives the scaling
coefficients, coefficients of congruence, and relative means and variances
of the trait in the female group shown in Table 15.4. It is of interest to
note that the female group gives its smallest mean difference for factor
IV, its smallest relative variance for factor 111, and its largest mean difference
and relative variance for factor II. These differences make substantive
sense, Note also that all factor correlations are lower for the female group
than the male group, suggesting clearer distinctions between these
dimensions of rape myth acceptance, particularly between “blame the
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TABLE 15,3
Multidimensional Quantitative Responses
e # A y % o = A= 4

1 2.88 2,92 114 .88 1,09 =04 05
2 3.12 8.24 86 a7 46 =12 =10
] 218 2.08 79 54 68 05 11
4 379 3.82 1.14 1.02 1.27 -.03 -.18
G 3.01 4,06 1.00 80 1.00 -.05 .00
7 1.69 1.57 il 50 48 A2 A1
10 297 2,88 113 86 1.06 A1 07
1 252 2,58 H2 68 85 =06 07
12 2.25 220 BR 58 72 03 A6
16 3.63 3.97 A6 A6 1.07 26 -1l
18 5,40 357 1,05 00 L1l -7 =06
B 4.24 4.56 73 a8 95 -.a2 -22
13 391 8.61 B8 77 79 S0 09
14 289 244 B0 52 53 =05 27
8 213 2,82 M b1 .14 -19 =17
9 1.72 1.66 63 29 54 06 09
19 192 1.38 B3 18 33 54 50
15 2.36 2.44 1.04 A6 56 -08 A8
17 2.24 2.73 B3 .89 1.08 ~49 =25

Fuctor Corvelations

1. K01 75 429
962 1, A9 256
756 637 1. 482
A19 285 540 1.

Note. Inn matrix, male results below the diagonal, female results ahove it

TABLE 16.4
Scaling Constants and Femnale Means/Variances

1 I m v
k 1.240 1.026 1,849 1211
¢ 1.188 1.064 1.399 0.718
1/k 0.650 0.950 0,293 0.682
—ofk -0.958 =1.087 -0.757 0,502

victim" and “excuse the offender,” which for the male group appear to
function as virtually the same concepl.

However, we come next to the observation that on rescaling the loadings
and mean parameters for each dimension separately, as in Table 15.3, we
still appear to have nonnegligibly different loadings for items 5, 7, 15, and
19, and now also for item 14, and also different means for items 13 and

COMPARING POPULATIONS 339

19, but no longer for item 15. The hypothesis that rape myth acceptance
functions for men as a rationalization for offensive behavior and functions
for women as a denial of vulnerability suggests the unidimensional analysis
should indicate differences in slopes that are ultimately explained by dis-
tinct correlations of factor I, the most well-represented dimension, with
factor TV, and possibly also with factors IT and IIL. This does not seem to
be the case. The functional type of explanation has an important general
role in accounting for general levels and group differences in nonrational
beliefs and attitudes, but a more fine-grained analysis would be needed
generally to account for the behavior of individual items, Thus the notable
behavior of item 15 fits a conception that by identifying rapists as “other”
than themselves, men can avoid recognizing themselves as potential rapists,
whereas women are less likely to identify rapists as “other” than the men
they know. As another kind of “explanation,” the even more notable be-
havior of item 19 might be “explained” by saying that for the male group
this is integrated into a more general system of sexist beliefs that would
not be shared by the female group. The other instances of DIF might
similarly allow a specific account, rather than an account in terms of ad-
ditional dimensions. Note in particular that the difference in mean for
item 13 persists from the unidimensional analysis in Table 15.2. But in the
context of the other two items, 5 and 14, defining factor 1, “excuse the
offender,” it becomes possible to see that item 13 specifically refers to
“rape” whereas the other variables defining this factor refer to forced
sex/taking sex. Gender differences on this item are then at least intuitively
understandable. These tentative suggestions are offered just to show the
kind of inquiry that opens up when differentially functioning items are
detected and studied.

BINARY ITEMS

The task in this section is to carry over the diagnostic devices in the previous
section to binary items. The treatment here is limited to normal-ogive
models without a pseudo-guessing parameter, Because a pseudo-guessing
parameter is unaltered by scale transformations, the treatment applies
equally to cases including such parameters. The normal-ogive is here pre-
ferred to a logistic model, for reasons that we demonstrate.

In Chapters 12 and 14 we found a direct connection between an item
response model for binary data and the linear common factor model for
quantitative item scores through item factor analysis. We assumed that a

set of "underlying” quantitative response “tendencies” Xj, ..., X}, follows
the common factor model as in (15.1), and that the m binary variables X;,
..., X, result from dichotomizations at threshold values 1, ... ,T, of the

response tendencies. We then have, under normality assumptions,



