
General structural model – Part 2: 
Categorical variables and beyond

Psychology 588: Covariance structure and factor models



Categorical variables 2

• Conventional (linear) SEM assumes continuous observed 
variables (except for exogenous  x)  --- thus, SE modeling of 
categorical variables not fully justifiable

• Empirical (discretized) vs. conceptual categories:

 Length measured in quarter-inch intervals
 # of deaths for heart failure
 Political affiliation, ethnicity
 Color

• Dichotomies as quantitative variables  --- dichotomous (and 
polytomous) variables used for “quantification” of nominal 
variables and any quantitative analysis/interpretation with them 
meaningful up to distinction of the categories



Why problem? 3

• Discretized variables are necessarily censored at the tails and  
center becomes taller with fewer categories  --- deviation from 
normality gets severe with 2 or 3 categories

 If continuous variable discretized, is it polytomous or 
ordinal?

• Crude measurement (too much rounding)  --- increased 
measurement error

• Individual differences in where to put thresholds  --- may create 
some systematic tendency (bias) or add more measurement 
error at best

• Following histograms show effects on kurtosis by even-interval 
categorization (N = 300)
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Consequences 5

• Suppose a linear structure holds for true, unobserved 
continuous indicators  y* as:

*
y y Λ η ε

then the categorized indicators  y don’t agree with the model:
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Simulation results 6

• Excessive kurtosis and skewness created by categorization 
result in too large chi-square (more rejection of correct 
parsimonious models than it should) and too large SE (more 
rejection of correct non-zero  θ)

• Chi-square estimates tend to be more influenced by excessive 
kurtosis and skewness than by # of categories

• Generally coefficients (β and  γ) and loadings are attenuated 
toward 0  --- in that categorization adds measurement errors

• When unobserved continuous indicators are highly correlated, 
categorization into few categories may artificially increase 
factorial complexity (resulting in correlated errors)  --- since 
mis-classifying has a bigger consequence (than less correlated 
cases) and the consequence is likely to vary by variables



Correction of  Σ 7

• Assuming the unobserved, continuous  y* takes certain 
distributional form (most often normal),  Σ* (i.e., tetrachoric or 
polychoric correlations) may be estimated based on observed 
proportions at bivariate combinations of categories, by 
maximizing the likelihood:
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where  Nij and  πij are, respectively, frequency and probability 
at the ij-th category of y1 and  y2;  Φ2 is CDF of bivariate
normal distribution;  and  ai and  bj are thresholds for the ij-th
category



• Any continuous  y is used as observed so that the entries of  
Σ* are Pearson, polyserial (biserial) or polychoric (tetrachoric) 
correlations

• ML estimation of these correlations requires intensive 
computation  --- thus, unstable with small samples

• Given  Σ*,  the usual SEM estimators will provide consistent 
estimates of  θ,  but WLS is recommended for correct statistical 
testing  --- available in PRELIS (included in LISREL)

• See the examples, Tables 9.6 & 9.8



Nonlinear measurement models 9

• Relationship between observed and latent variables is defined 
as, e.g., the logistic or ogive function: 

 If  y* is normal,  Pr(y < c) follows the normal CDF (ogive
function) with varying central locations  

 Assuming only one latent variable, it becomes “graded item 
response” or “2 parameter logistic” model

 The generalized latent variable modeling approach allows 
for such nonlinear relationships, along with other 
relationships for counts and duration (survival), by adopting 
the generalized linear modeling (GLM) approach  --- offered 
e.g., by Mplus



 Comprehensive treatment of the generalized modeling 
approach  --- Skrondal A.  & Rabe-Hesketh S. (2004). 
Generalized latent variable modeling, CRC

 Short introduction  --- Muthen B.O. (2002). Beyond SEM: 
General latent variable modeling. Behaviormetrika, 29, 81-
117. (available in the course website)



Further developments of SEM 11

• Latent growth curve modeling

• Multilevel SEM for hierarchically designed data

• Categorical latent variables

 When one latent categorical variable assumed with multiple 
categorical indicators, it becomes latent class model

 More general modeling framework is what’s known as “finite 
mixture” modeling  --- possible with continuous indicators

 It yields probabilistic membership as “latent variable scores”

 Such idea of “latent clusters” can be applied to any SEM 
modeling approaches


