
General structural model – Part 2: 
RAM, special constraints and 

instrumental variables

Psychology 588: Covariance structure and factor models



Alternative representation 2

• LISREL notation does not allow:

 Loadings from  ξ to  y or  η to  x, or from an indicator to 
another

 Covariances between different kinds of error terms (e.g., 
between  δ and  ε)

• These “unacceptable” parameters are a limitation of the LISREL 
notation, not genuine limitation of SEM

• Reticular Action Model (RAM) provides an alternative, 
apparently a more general SEM representation



LISREL model represented by RAM 3
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LISREL & RAM really different? 4

• Either notation can represent almost all models  --- compare 
Fig 9.1 (a) and (b), p. 398

 All  ξ are rewritten as  η along with correlated  ζ

 All  ε are rewritten as  ζ with  y turning into  η

• RAM is more efficient in # of equations (2 vs. 3) and in kinds of 
parameters (6 vs. 15), while it requires much bigger parameter 
sets with most of them constrained to 0 or 1

• By RAM, the lesson is not what RAM can do more than 
LISREL, but what SEM can do as far as a model is identifiable

• Most programs (including LISREL) overcome the limitation of 
the LISREL notation



Equality & inequality constraints 5

• Constraints at constant values and of equality are easy to 
impose in terms of numerical optimization, as readily available 
in all SEM programs

• In contrast, parameter estimation is very difficult with constraints 
of inequality or a functional form  --- such constraints are not 
widely available (EQS and COSAN seem to be exceptions) 

 Inequality  --- λ12 > c,  γ12 > β23,  γ12 + β23 – 2β34 > c

 linear equality  --- γ12 + β23 – 2β34 + c = 0

 nonlinear equality  --- 2 3
12 23 342 0c     



Alternative modeling for some complex constraints 6

• Any SEM program with the equality constraint feature can be 
tricked as follows (due to Rindskopf, 1983 & 1984):

 Create a “phantom” latent variable without error term so that 
its preceding variable fully explains its variance

 Set paths involving the phantom variable and equality 
constraints such that they indirectly satisfy the desired 
inequality or some functional relationship

• E.g., see Fig. 9.2, p. 402



Quadratic and interaction terms 7

• Key idea of the Kenny-Judd (1984) approach adapted to SEM 
is to model quadratic and product terms of latent variables 
through their proper indicators

• Like standard latent variable modeling, quadratic and 
interaction terms of latent variables must be identifiable  ---
typically attained by indicators of product and squared variables 
(see examples in pp. 403-406)

• Consider the example of quadratic term in p. 403: 
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• If the multinormality assumption holds for the original 
exogenous variables (ξ1,  δ1, δ2) all covariances between new 
LVs (ξ1

2,  ξ1δ1, δ1
2, etc.) become 0 (Kenny & Judd, 1984) and their 

variances are simple functions of variances of  ξ1,  δ1, δ2 ---
the only new parameter  λ12 is identifiable (see p. 404) and so 
is the whole model

• However, we will need more flexible constraints such as  λi = λj
2

(e.g., the loadings from ξ1 and ξ1
2, respectively, to x1 and x1

2), 
which is not readily available (e.g., unavailable in AMOS; 
available in Mplus and Mx); or the alternative approach may be 
used



• More problems:

 Product or powered indicators can’t be normal (highly 
kurtotic and skewed)  --- the ML and GLS estimators are 
still consistent but chi-square test and individual parameter 
test will be all invalid;  alternatively, ADF might be used with 
large samples

 What if the nonproduct LVs are not normal?  --- Kenny-Judd 
approach hinges on this normality to eliminate all 
covariances between new LVs (e.g., ξ1

2,  ξ1δ1, δ1
2, etc.), 

and so any resulting estimates will be biased



Corrected covariance matrix (Busemeyer & Jones, 1983) 11

• Based on rather strong assumptions:

 Only one indicator per nonproduct latent variable

 All error terms are independent of predictors in equations 
and of each other

 All nonproduct latent IVs are normal 

 Measurement error variances (or reliability of measures) 
known 
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Instrumental-variable estimator 12

• Fundamental assumption in regression equations is that 
predictors be uncorrelated with residual term,  E(xζ) = 0

• If unsatisfied, the OLS estimator for regression weights will be 
inconsistent

• Estimation by instrumental variables is to correct for such 
correlations of the residual term with predictors

y x  



Robust least-squares estimation by IV 13

• Necessary conditions of IV,  z:

• Then,
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• Given multiple causal relations (equations) in measurement and 
path models, any variable that meets the IV conditions may be 
used for parameters that do not directly involve that variable  ---
nicely suited particularly to CFA where indicators has common 
causes, ξ



Robust LS estimation of loadings by IV 14
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• By combining equations for  x1 and  x2,  we have

• As before by taking covs with IVs, say  x3 and  x4, we have
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• Consider a single factor model with 4 indicators:



• The LS estimation by IV provides consistent estimates, but not 
efficient  --- more efficient estimator uses inverse of cov matrix 
of all IVs as a weight matrix like weighted LS

• If measurement models are factorially complex (more than uni-
factorial)
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where  xA contains  n indicators that determine the scale of ξ
and  xC contains  q – n – 1 IVs to estimate loadings for  xi ;
and, e.g.,  SAC = E(xAx'C)



• Once all loadings are estimated by IVs, LS estimates of Θδ
and  Φ are easily computed;  also, ACOV of Λx is known (see 
Eqs. 9.60, 9.61, 9.66 and 9.67)

• 2-stage least squares (2SLS; available in AMOS), like 
identification of general models, first ignores all causal 
relationships between LVs and treat the model as CFA and 
estimate all parameters by the IV procedure; then, path 
coefficients between LVs (B and  Γ) are estimated using IVs 
and  Ψ is accordingly computed

• A big advantage of IV estimation is that it’s not iterative, and so 
IV estimates may be used as starting values for other (more 
desirable) estimators, yielding faster and more optimal results



Limitations of IV estimation 17

• Correlated error terms  --- use only uncorrelated ones as IVs; 
in practice, we often don’t know which error terms are 
correlated with which

• IV estimation uses only part of information in given data (one 
equation considered at a time)  --- less efficient which is a cost 
for robust estimation

• Asymptotic SE available only for path coefficients and loadings, 
not for  Φ, Ψ and Θ


