
General structural model – Part 1: 
Covariance structure and identification

Psychology 588: Covariance structure and factor models



Latent variables 2

• Interchangeably used: 
 constructs  --- substantively defined concepts
 common factors or components  --- something uncorrelated 

with measurement errors (cf. case of cause indicators)
 true scores in measurement theory

• Generality vs. specificity  --- latent variables are operationally 
defined to imply a set of indicators (but the reverse is not true), 
i.e., more generalizable than what’s intended by each indicator

• Good indicators
 represent distinctive aspects of a defined concept
 reasonably inter-correlated (i.e., internally reliable) since they 

possess some common characteristics
 factorially simple; ideally uni-factorial



General structural models 3

• General structural equation models combine:

 measurement models that operationally define a set of 
theoretical concepts, allowing for fallible measurement, with

 a path model that explains complex relationships among a 
set of (mostly) latent variables

• All forms of models considered so far are special cases of GM 
(e.g., path models only with observed variables, CFA, MIMIC, 
etc.)  --- rules and principles considered so far apply only to a 
part of GM, and so we will consider ways of combining them as 
well



• The general SE model subsumes most multivariate (causal) 
models, including MANOVA, discriminant function analysis, 
multivariate regression, canonical correlation analysis (CCA)

• The equivalence is about the model form, not about what 
optimization function is used
 The above listed models can be considered as special cases 

of CCA, which uses the OLS like loss function (i.e., maximum 
accounted variance of manifest variables) 

 This type of variance maximization tends to fit more of 
variances than covariances  --- cf. principal component 
analysis vs. common factor analysis

 Component model type of approach to SEM  --- Partial Least 
Squares (Wold, 1974, European Economic Review, 67-86) and 
Generalized Structured Component Analysis (Hwang & Takane, 
2004, Psychometrika, 81-99)



• By combining measurement models and a path model, we 
mean:
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where we have 4 parameter matrices of “regression weights”  (B,  
Γ,  Λy,  Λx) and 4 covariance matrices for exogenous latent 
variables (Φ,  Ψ,  Θε,  Θδ)  --- any cause indicators included in ξ

• Based on this structural representation, we build covariance 
structure of observed variables  (y and x)

The model form 5



Implied covariance matrix 6
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• Compare to the case only with observed variables:
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• What if some  ε are correlated with  δ?



Identification 7

• θ is globally identified if no vector  θ1 and  θ2 exist such that:

   1 2 1 2, Σ θ Σ θ θ θ

• If any element of  θ is unidentifiable, estimates of all others, if 
any, shouldn’t be interpreted

• Identifiability, as before, means parameters “can be” identified 
by algebraic form but doesn’t mean “will be” numerically

E.g.,  γ11 is algebraically solved to be                                       
and sample estimate of  cov(x2, x1) is very close to  0

   2 1 2 1cov , cov ,x y x x

• What we’ve learned so far about identification equally applies 
here but only for parts of GM, not as a whole
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• Number of free parameters in  θ does not exceed distinctive 
elements in  S:

• Necessary, not sufficient
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Two-step rule 9

• Step 1  --- ignore all paths between latent variables, treat them 
as simply mutually correlated factors, and use any feasible 
identification rule for CFA (with fully unconstrained Φ)

• Step 2  --- if passes step 1, ignore all measurement 
relationships and use any feasible identification rule for SEM 
with observed variables

Any cause indicators can be treated as latent variables with 
loading of 1 and no measurement error  --- equivalent to simply 
including them in ξ

• Sufficient, not necessary; so, there will be identifiable models 
that do not pass two-step rule  --- local identification will be 
useful in such cases, though it’s empirical and fallible 

• See Fig. 8.3 (p. 329), 8.4 (p. 330) and 8.5 (p. 333)



MIMIC rule 10

• Multiple Indicators and MultIple Causes (MIMIC) model  --- a 
latent variable is measured with multiple (reflective) indicators 
and caused by multiple observed variables (formative or cause 
indicators, or covariates)

• A sufficient condition per  η for identification of a MIMIC model:
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• For cases when  m > 1,  if all cause indicators affect all  η’s
and each  η is measured with at least 2 indicators, the 2-step 
rule applies;  how?

• In general, too limited model condition in that no path modeling 
allowed between latent variables


