Confirmatory Factor Analysis: Model comparison, respecification, and more

Psychology 588: Covariance structure and factor models

- Essentially all goodness of fit indices are descriptive, with no statistical device for selecting from alternative models (see table 7.8, p. 290 for the political democracy example)
- Same for other types of fits (e.g., AIC, BIC) or cross-validation technique
- Chi-square difference test available for comparing a nested model with a nesting model, provided that all assumptions are reasonably met and more importantly the nesting model is correct
- Why does a nested model <u>must</u> produce an equal or higher chisquare value regardless of types of constraints (e.g., constant, equality, or any functional form)? Impossible at all to have a lower value?

$$F_{\text{LR}} = -2\left[\log L\left(\hat{\boldsymbol{\theta}}_{\text{nested}}\right) - \log L\left(\hat{\boldsymbol{\theta}}_{\text{nesting}}\right)\right] = -2\log\frac{L\left(\hat{\boldsymbol{\theta}}_{\text{nested}}\right)}{L\left(\hat{\boldsymbol{\theta}}_{\text{nesting}}\right)}$$
$$= (N-1)\left(F_{\text{nested}} - F_{\text{nesting}}\right) = \chi^{2}_{\text{nested}} - \chi^{2}_{\text{nesting}}$$

- F_{LR} itself is a chi-square variable with $df = df_{nested} df_{nesting}$
- Null hypothesis --- a set of constraints (as the only difference between the nested and the nesting model) hold in the population
- F_{LR} is conditional to the nesting model --- consequence of an additional constraint will depend on what's already imposed, e.g., significance for pairs of $F_1 > F_2 > F_3 > F_4$ are not necessarily consistent with the order

- LR test is tedious when we want to find a statistically justifiable "best" fitting model with respect to a set of meaningful constraints; or put differently, when we want to explore for a most optimal model among many alternative, substantively justifiable models
- Now we need a method that allows for statistical inference about:
 - > What if a set of constraints in a given model is freed?
 - What if a set of freely estimated parameters are constrained?

- LM test answers "What if a set of constraints are freed?" only based on estimates of a nested (more restricted) model
- What's suggested by LM is the <u>expectation</u> of chi-square change (and the associated parameter estimates) if some constraints are removed --- tends to underestimate the chisquare reduction compared to the difference by LR test
- When only one constraint is considered, LM is called "modification index" (which is available in most SEM programs including AMOS) --- though the LM statistic is defined for any subset of the current constraints, SEM programs print only LM for each constraint

- Consider a set of constrained parameters $\boldsymbol{\theta}_0$ (not necessarily all zero) for $\boldsymbol{\theta}_a$ in a partitioned set, $\boldsymbol{\theta} = [\boldsymbol{\theta}_a', \boldsymbol{\theta}_b']'$; then the restricted and unrestricted parameter sets are written, respectively, $\boldsymbol{\theta}_r = [\boldsymbol{\theta}_0', \boldsymbol{\theta}_b']'$ and $\boldsymbol{\theta}_u = [\boldsymbol{\theta}_1', \boldsymbol{\theta}_b']'$, where $\boldsymbol{\theta}_1$ and $\boldsymbol{\theta}_b$ are freely estimated ---- we will use this representation when considering power of testing
- The LM statistic is:

$$F_{\rm LM} = \mathbf{s}(\hat{\boldsymbol{\theta}}_{\rm r})' \operatorname{acov}(\hat{\boldsymbol{\theta}}_{\rm r}) \mathbf{s}(\hat{\boldsymbol{\theta}}_{\rm r})$$

where $\mathbf{s}(\hat{\mathbf{\theta}}_{r})$ is a first-order partial derivatives of an optimization function (e.g., F_{ML}) evaluated at $\hat{\mathbf{\theta}}_{r}$, and then F_{LM} is chi-square distributed with $df = \#(\mathbf{\theta}_{0})$; and so by F_{LM} we can tell how much of chi-square improvement to expect due to removing the constraints $\mathbf{\theta}_{0}$

- Only by fitting the nesting (less restricted) model, the Wald test answers "What if a set of freely estimated parameters are constrained?"
- The Wald statistic F_W is defined as follows and chi-square distributed with $df = #(\mathbf{\theta}_0)$ under H_0 (i.e., $\mathbf{\theta}_a = \mathbf{\theta}_0$)

$$F_{\rm W} = \left(\hat{\boldsymbol{\theta}}_1 - \boldsymbol{\theta}_0\right)' \left[\operatorname{acov}\left(\hat{\boldsymbol{\theta}}_1\right)\right]^{-1} \left(\hat{\boldsymbol{\theta}}_1 - \boldsymbol{\theta}_0\right)$$

where $acov(\hat{\theta}_1)$ is an estimate of asymptotic covariance matrix of θ_a (evaluated at $\hat{\theta}_1$) --- and so a significant F_W indicates the constraints being incorrect, $\theta_a \neq \theta_0$

• If only one additional "zero" constraint is considered $(\theta_i = 0)$, F_W becomes square of the Z statistic for θ_i (called C.R. in AMOS)

$$F_{\rm W} = \hat{\theta}_i^2 / \operatorname{avar}\left(\hat{\theta}_i\right)$$

- The LR, LM and W tests are asymptotically equivalent ---they're all about the same fit change, except for differently defined sampling error
- Which of the LM or the Wald test fits better into the logic of null hypothesis significance testing? Does it really matter? See Fig 7.5, p. 295

- First of all, don't forget that SEM better serves confirmatory research questions --- implying that you should start with a reasonably "correct" model
- Consider different hierarchy of model structure in respecification, instead of only looking at $F_{\rm LM}$ or $F_{\rm W}$:
 - > model "configuration"
 - > parameters near the observed variables vs. far
- Any respecification based on $F_{\rm LM}$ or $F_{\rm W}$ should be substantively justifiable; otherwise, it could be nothing but capitalizing on errors
- Also, researchers should try to exhaust all substantively interpretable models even when a satisfactory fit is attained

- Limitations of exploratory respecification, based on a sample:
 - LM and Wald tests are <u>dependent</u> on the fit model (importantly on where you start)
 - > Like stepwise regression, there is order effects
 - Some alarming evidence from simulation studies against exploratory use of LM and Wald tests (Herbing & Costner, 1985; MacCallum, 1986)
- The exploratory use is most beneficial when
 - > The initial model is not so much misspecified
 - \succ Large N and
 - Resepecification is considered only for a particular part of the model --- i.e., sure about the other constraints or free parameters

- Significant chi-square change doesn't necessarily mean a substantively meaningful parameter change --- N matters
- LOOK at residuals --- can suggest where the problems are, but it may not be so obvious why and how they happen
- Piecewise model fitting --- breaking the problem into smaller and easy pieces, particularly for a complicated model

- Estimation of factor scores is inherently indeterminant, regardless of EFA or CFA
- Essentially because too many unknowns (n common factors + q error terms) compared to knowns (q indicators)
- The most common approach is regression in an unusual direction (predicting the latent with the observed); the resulting regression weights called "factor-score weights" --- different from loadings which are sometimes called "factor weights"
- Since any estimate of FS is fallible, replacing measurement models with FS estimates (treating them as observed variables) does not provide consistent estimates of path coefficients

- Modeling so far excluded mean structure, which is usual in modeling covariance structure (for a single group)
- Cases when to consider the mean structure:
 - Comparison of heterogeneous groups in factor means
 - Multilevel modeling --- means in nested groups interferes with covariance structure unless properly addressed
 - Comparison of item (or subscale) difficulties
 - When missing data need be treated along with the analysis --- most SEM programs offer missing imputation by model expectation assuming "missing at random"

 Mean structure included as an additional part of the model without affecting the covariance structure:

$$\mathbf{x} = \mathbf{v} + \Lambda \boldsymbol{\xi} + \boldsymbol{\delta}, \quad E(\boldsymbol{\xi}) = \boldsymbol{\kappa}, \quad E(\boldsymbol{\delta}) = \mathbf{0}$$

 $E(\mathbf{x}) = \mathbf{v} + \Lambda \boldsymbol{\kappa}, \quad E(\tilde{\mathbf{x}}\tilde{\mathbf{x}}') = \Lambda \boldsymbol{\Phi} \Lambda' + \boldsymbol{\Theta}$

• Common scaling convention --- 0-intercept and 1-loading for one indicator per factor (e.g., 3 indicators for each of 2 factors):

$$\mathbf{v} = \begin{bmatrix} 0 \\ \nu_2 \\ \nu_3 \\ 0 \\ \nu_5 \\ \nu_6 \end{bmatrix}, \quad \mathbf{\Lambda} = \begin{bmatrix} 1 & 0 \\ \lambda_{21} & 0 \\ \lambda_{31} & 0 \\ 0 & 1 \\ 0 & \lambda_{52} \\ 0 & \lambda_{62} \end{bmatrix}$$

$$\mathbf{x} = \mathbf{\Lambda}_{(1)} \boldsymbol{\xi}_{(1)} + \boldsymbol{\delta}, \qquad \mathbf{\Sigma} = \mathbf{\Lambda}_{(1)} \boldsymbol{\Phi}_{(1)} \mathbf{\Lambda}_{(1)}' + \boldsymbol{\Theta}$$

$$\mathbf{\xi}_{(1)} = \mathbf{\Lambda}_{(2)} \boldsymbol{\xi}_{(2)} + \boldsymbol{\zeta}_{(1)}, \qquad \mathbf{\Phi}_{(1)} = \mathbf{\Lambda}_{(2)} \mathbf{\Phi}_{(2)} \mathbf{\Lambda}_{(2)}' + \mathbf{\Psi}_{(1)}$$

$$\vdots \qquad \vdots$$

- Higher-order factors account for covariance between lowerorder factors, not between lower-order error terms (e.g., gintelligence underlying specific kinds of intelligence)
- Path modeling of latent variables explains covariances between (1st order) factors through particularly specified directional paths whereas higher-order FA explains them by existence of higherorder factors (as common causes)