
Confirmatory Factor Analysis: Model 
comparison, respecification, and more

Psychology 588: Covariance structure and factor models



Model comparison 2

• Essentially all goodness of fit indices are descriptive, with no 
statistical device for selecting from alternative models (see 
table 7.8, p. 290 for the political democracy example)

• Same for other types of fits (e.g., AIC, BIC) or cross-validation 
technique

• Chi-square difference test available for comparing a nested 
model with a nesting model, provided that all assumptions are 
reasonably met and more importantly the nesting model is 
correct

• Why does a nested model must produce an equal or higher chi-
square value regardless of types of constraints (e.g., constant, 
equality, or any functional form)? Impossible at all to have a 
lower value?



Likelihood ratio test for ML 3

• FLR itself is a chi-square variable with  df = dfnested – dfnesting

• Null hypothesis  --- a set of constraints (as the only difference 
between the nested and the nesting model) hold in the 
population 

• FLR is conditional to the nesting model  --- consequence of an 
additional constraint will depend on what’s already imposed, 
e.g., significance for pairs of  F1 > F2 > F3 > F4 are not 
necessarily consistent with the order
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• LR test is tedious when we want to find a statistically justifiable 
“best” fitting model with respect to a set of meaningful 
constraints;  or put differently, when we want to explore for a 
most optimal model among many alternative, substantively 
justifiable models

• Now we need a method that allows for statistical inference 
about:

 What if a set of constraints in a given model is freed?

 What if a set of freely estimated parameters are 
constrained?



Lagrangian Multiplier test 5

• LM test answers “What if a set of constraints are freed?” only 
based on estimates of a nested (more restricted) model

• What’s suggested by LM is the expectation of chi-square 
change (and the associated parameter estimates) if some 
constraints are removed  --- tends to underestimate the chi-
square reduction compared to the difference by LR test

• When only one constraint is considered, LM is called 
“modification index” (which is available in most SEM programs 
including AMOS)  --- though the LM statistic is defined for any 
subset of the current constraints, SEM programs print only LM 
for each constraint



• Consider a set of constrained parameters  θ0 (not necessarily 
all zero) for  θa in a partitioned set,                     ;  then the 
restricted and unrestricted parameter sets are written,
respectively,                        and                      ,  where  θ1 and 
θb are freely estimated  --- we will use this representation 
when considering power of testing

• The LM statistic is:
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where            is a first-order partial derivatives of an 
optimization function (e.g., FML)  evaluated at and then  
FLM is chi-square distributed with  df = #(θ0);  and so by  FLM
we can tell how much of chi-square improvement to expect due 
to removing the constraints  θ0
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Wald test 7

• Only by fitting the nesting (less restricted) model, the Wald test 
answers “What if a set of freely estimated parameters are 
constrained?”

• The Wald statistic  FW is defined as follows and chi-square 
distributed with  df = #(θ0) under  H0 (i.e., θa = θ0)

     1
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where                   is an estimate of asymptotic covariance 
matrix of  θa (evaluated at     )  --- and so a significant  FW
indicates the constraints being incorrect,  θa ≠ θ0
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• If only one additional “zero” constraint is considered  (θi = 0),  
FW becomes square of the  Z statistic for  θi (called C.R. in 
AMOS)

• The LR, LM and W tests are asymptotically equivalent  ---
they’re all about the same fit change, except for differently 
defined sampling error

• Which of the LM or the Wald test fits better into the logic of null 
hypothesis significance testing?  Does it really matter?  See Fig 
7.5, p. 295
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Respecification 9

• First of all, don’t forget that SEM better serves confirmatory 
research questions  --- implying that you should start with a 
reasonably “correct” model 

• Consider different hierarchy of model structure in 
respecification, instead of only looking at FLM or  FW: 

 model “configuration”

 parameters near the observed variables vs. far

• Any respecification based on  FLM or  FW should be 
substantively justifiable; otherwise, it could be nothing but 
capitalizing on errors

• Also, researchers should try to exhaust all substantively 
interpretable models even when a satisfactory fit is attained



• Limitations of exploratory respecification, based on a sample:

 LM and Wald tests are dependent on the fit model 
(importantly on where you start)

 Like stepwise regression, there is order effects

 Some alarming evidence from simulation studies against 
exploratory use of LM and Wald tests (Herbing & Costner, 1985; 
MacCallum, 1986)

• The exploratory use is most beneficial when

 The initial model is not so much misspecified

 Large  N and

 Resepecification is considered only for a particular part of 
the model  --- i.e., sure about the other constraints or free 
parameters



• Significant chi-square change doesn’t necessarily mean a 
substantively meaningful parameter change  --- N matters

• LOOK at residuals  --- can suggest where the problems are, 
but it may not be so obvious why and how they happen

• Piecewise model fitting  --- breaking the problem into smaller 
and easy pieces, particularly for a complicated model



Factor scores 12

• Estimation of factor scores is inherently indeterminant, 
regardless of EFA or CFA 

• Essentially because too many unknowns  (n common factors +
q error terms) compared to knowns (q indicators)

• The most common approach is regression in an unusual 
direction (predicting the latent with the observed); the resulting 
regression weights called “factor-score weights”  --- different 
from loadings which are sometimes called “factor weights”

• Since any estimate of FS is fallible, replacing measurement 
models with FS estimates (treating them as observed variables) 
does not provide consistent estimates of path coefficients



Mean structure 13

• Modeling so far excluded mean structure, which is usual in 
modeling covariance structure (for a single group)

• Cases when to consider the mean structure:

 Comparison of heterogeneous groups in factor means

 Multilevel modeling  --- means in nested groups interferes 
with covariance structure unless properly addressed

 Comparison of item (or subscale) difficulties

 When missing data need be treated along with the analysis  
--- most SEM programs offer missing imputation by model 
expectation assuming “missing at random”



• Mean structure included as an additional part of the model 
without affecting the covariance structure:
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• Common scaling convention  --- 0-intercept and 1-loading for 
one indicator per factor (e.g., 3 indicators for each of 2 factors):
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Higher-order FA 15

• Higher-order factors account for covariance between lower-
order factors, not between lower-order error terms (e.g., g-
intelligence underlying specific kinds of intelligence)

• Path modeling of latent variables explains covariances between 
(1st order) factors through particularly specified directional paths 
whereas higher-order FA explains them by existence of higher-
order factors (as common causes)
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