
Confirmatory Factor Analysis: 
Evaluation

Psychology 588: Covariance structure and factor models



• Evaluating a model is equivalent to testing a hypothesis of a set 
of constraints (that make whether explicit or implicit), 
provided that all other assumptions fulfilled  --- similar to the 
logic behind null hypothesis testing

• All overall fits quantify             whether they are statistical 
and/or standardized (i.e., bounded by [0,1])

• Overall fit indicates goodness (or badness) of the whole model, 
summarizing into a scalar value

Individual fits tell goodness of fit to particular manifest DVs (as 
indicated by  R2 or SMC) and standard error of parameters 
indicate how reliable parameter estimates are  --- both overall 
and individual fits should be evaluated! 
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• Residuals               indicate how well the specified model’s 
implied covariance matrix approximates the sample 
covariance matrix  S

• Sources of residuals:

 Σ ≠ Σ(θ), which we want to know by the residuals

 sampling fluctuation  --- with large  N, smaller residuals are 
expected if the model is correct

** scale of observed variables determines the size of residuals  
--- if correlations are analyzed, residuals would not have 
scale dependency, varying [-2,2] 
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RMR (root mean-square of residual) 4

Note that the denominator counts variances as well

• As an alternative to                 fit to covariances may be 
compared by normalized residuals (useful to spot where the 
model predict poorly with an adjustment for sampling error):
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• RMR represents average residual, as SD indicates an average 
deviation of a variable around its mean
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Chi-square test (Browne, 74, 82, 84) 5

• The most common parametric statistical test for overall fit

• Chi-square test implies a null hypothesis of:
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 Insignificant results suggest that the “tested” and “nested” 
models (with larger model  df and      ) are not so bad

 Which of  α = 0.05 vs.  0.25 would lead to more 
conservative test for a proposed model?

 Re. the nested-nesting comparison, you may substantively 
prefer more parsimonious model sometime and more 
parameterized model other times  --- what  α to use?
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• Approximation to a chi-square distribution will depend on 
assumptions made on observed DVs (e.g., not excessive 
kurtosis)

• Given non-normal data:

 Data conditions where chi-square testing robust (Anderson 
& Gerbing, 1984; Bentler & Bonett, 1980)

 Robust chi-square statistics (by Satora, Bentler, etc.)

 Alternative estimators (e.g., ADF) with relaxed conditions 
(by Browne)

 Bootstrapping

• What’s an optimal  N?  --- dilemma between power and 
substantive meaning of misfit  (see p. 269 for a state of the art 
in interpreting a chi-square value)



Incremental fit indices: Normed FI 7

where  Fb and  Fm indicate the fitting function (e.g.,  FML or  
FGLS)  for the baseline (independence) and the hypothesized 
models, respectively  --- one example for the baseline model is
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• NFI (Bentler and Bonett, 1980) represents relative fit 
improvement compared to the upper bound  Fb,  due to the 
parameters that explain the data covariances

• Standardized to 10 1  



• Model  df not taken into account, and so more parameterized 
models will be always preferred (if       values are compared 
literally) 

• “Sensitive” to change of N --- consequence of using a larger  
N (i.e., smaller sampling error) is confounded with improved fit 
due to better specification of the model
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:  Incremental FI (Bollen, 1988) 9

• E(Δ1) = 1  when the tested model is correct

• Δ2 incorporates  N so as to lessen the unaccounted 
dependency of  Δ1 on  N

• Adjusts for  dfm so that more parsimonious model is preferred 
for the same fit
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• Not standardized since  Δ2 > 1 for overfitting models that fit 
better than what’s expected, i.e.,

• With large  N,  Δ2 – Δ1 becomes trivial since
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:  Relative FI (Bollen, 1986) 11

• Comparison of fit made per  df --- fit improvement evaluated 
as “efficiency” per  df

• N not used in calculation, and so different levels of sampling 
error unaccounted

• Not lower bounded by  0 --- occurs when the test model’s 
relative improvement per  df is worse than the baseline 
model’s
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:  Tucker-Lewis Index (1973) 12

• Parallel to the adjustment of  Δ1 for  df

• ρ1 defines the best fitting model as                        while  ρ2
defines it as the expectation with a correct “null” 
model

• Not standardized

• ρ2 value substantially less than 1 indicates the model 
misspecified and larger than 1 an overfitting
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Comparative Fit Index 13

• Yet, another popular comparative index by Bentler (1990, 
Psychological Bulletin, 107, 238–246) 

• χ2 – df represents noncentrality of a model  --- expected 
deviation from the center of a (central) chi-square distribution 
for any wrong model

• Identical to RNI (Relative Noncentrality Index, McDonald & Marsh, 1990, 
Psychological Bulletin, 107, 247-255), except CFI bounded by [0,1]

• All comparative indices depend on choice of baseline
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Goodness of Fit Index (Jöreskog & Sörbom, 1986) 14

• Measures relative fit of entries in  S --- conceptually similar to 
R2

• Absolute fit index in that the misfit was not compared to a worst 
situation or anything

• AGFI adjusts for  df,  preferring simpler models

• Similar indices can be defined for ULS and GLS (p. 277)
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Root Mean Square Error of Approximation 15

• F0 and  F are, respectively, fit functions in the population and 
a sample for a hypothesized model; and when they are 
parametrically defined (e.g., ML, GLS), RMSEA provides 
statistical information on misfit due to misspecification

• Given 90% CI of an RMSEA, if its lower bound is 0 we don’t 
reject the null hypothesis of exact fit by the considered model
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• Quantifies discrepancy per  df like  Δ2 and  ρ2

• RMSEA due to Steiger & Lind (1980, paper presented in the Psychometric 
Society meeting)

• Browne and Cudeck (1993, In Testing structural equation models, Ed. by 
Bollen & Long, pp. 136-162) suggests RMSEA < 0.05 for well-fitting 
model, < 0.08 for reasonable approximation, and > 0.1 
unacceptable



And more… 17

• Parsimony indices adjusted for parsimony ratio,  

• Hoelter’s CN  estimates  N to reject a model with a specific  F
value at  α

• Akaike’s and Bayes Information Criteria (AIC, BCC, BIC) useful 
for comparison of non-nested models as far as the same data 
are analyzed 

• All fit indices can be cross-validated, jackknifed, and 
bootstrapped (if handled by more able computational 
environment, e.g., R or Matlab)

• Further reading: chapters 2, 3, 5, 6 and 8 in testing structural 
equation models, eds. Bollen & Long, 1993, Sage
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Individual fit measures 18

• Estimates proper & “reasonable”?

• Roots of asymptotic variance of parameters are sampling errors 
and so we can statistically tell if a particular parameter differs 
from 0 by taking as a  Z statistic

• R2 for observed DVs tells how much the model explains of the 
variance of each observed DV  --- coefficient of determination 
do the same thing but collectively for all observed variables 
based on the “generalized variance”,
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