
Confirmatory Factor Analysis: 
Identification and estimation

Psychology 588: Covariance structure and factor models



Identification 2

• Covariance structure of measurement model:

  x x  Σ θ Λ ΦΛ Θ

where we can impose various kinds of constraints (zero, equality, 
etc.) on selective entries of  Λx and Φ;  and free selective off-
diagonal elements in Θδ, provided that the resulting model is 
identifiable

• Though CFA has different parameter sets than the path model 
only with observed variables, the basic ideas hold:

 A model is identified if and only if every single free parameter has 
a unique solution

 A parameter is identified if it can be written as a function (or 
functions) of the data (variances/covariances) that is unique given 
an optimization function (e.g., ML)



Single-factor model 3

• As a simplistic case, consider only one factor measured by 2 or 
3 indicators, with no correlated errors (see detailed algebraic 
derivation in pp. 240-242)

 2 indicators  --- one more constraint (in addition to the 
scaling constraint) needed for just identification; e.g., known 
reliability, tau-equivalent measures

 3 indicators  --- just identifiable with the scaling constraint

 Multiple orthogonal factors with a uni-factorial loading 
pattern can also be considered as separate single-factor 
models for identification, except that any non-zero 
covariance between indicators of different factors will also 
contribute to misfit



t-rule 4

• With no knowledge whatsoever about parameters to constrain, 
the factor model (for both EFA and CFA) has free parameters 
as many as:

 q × n factor loadings in  Λx

 n (n + 1) /2 nonredundant elements in Φ

 q (q + 1) /2 nonredundant elements in  Θδ

• Thus, constraints (including the scaling constraints) needed so 
as to satisfy

 1 2t q q 

• As before, t-rule is necessary, not sufficient



Three indicators per factor 5

• Three indicators or more per factor (n ≥ 2) are sufficient if

 All indicators are uni-factorial

 Error terms are not correlated (diagonal  Θδ)

 Φ needs no constraints (such as orthogonality)

• Identification established since 

 λij,  ϕjj,  δii are identifiable given 3 or more indicators for 
each  ξ j,  according to the 3-indicator condition for the 
single-factor model



 Remaining parameters  ϕjk , j ≠ k are identifiable by 
covariance between the indicators that determine the scale 
of  ξ j and  ξk

,i j i h k h jk ihx x          

 Additional covariances between indicators for different 
factors will make the model overidentified, requiring an 
optimization for estimation  --- general for any free 
parameters



Two indicators per factor 7

• Two indicators per factor (n ≥ 2) are also sufficient if 

 all indicators are uni-factorial 
 diagonal  Θδ

 ϕjk ≠ 0, j ≠ k

• Consider a simple case of  n = 2:
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• All parameters in the  n = 2 case are identified, i.e., can be 
written as functions of data variances and covariances (see p. 
245)

• Further relaxed sufficient condition:

 All indicators are uni-factorial

 Diagonal  Θσ

 Each row of  Φ has at least one nonzero off-diagonal 
element  --- meaning that for every  ξ j, there is at least 
one other  ξk such that  ϕjk ≠ 0, and so the identifiability of 
the  n = 2 case holds per the j-k pair, and any additional  
ϕjk' ≠ 0 will make the model overidentified (and so will more 
indicators per factor)



Identification in practice 9

• None of the considered rules is unconditionally necessary and 
sufficient;  and we often want to test a model with factorially-
complex indicators, some correlated errors, and sometimes all 
orthogonal factors (e.g., Big 5 personality factors)

• Difficult to derive a general algebraic rule for a wide range of 
factor models (also true for the path model part since the 
necessary and sufficient rank condition only holds with free off-
diagonal entries in  Ψ)

• A rule of thumb is 3 indicators per factor  --- not necessarily 
sufficient and so an empirical test is useful for each specific 
model



Empirical test for identification (of general models) 10

• Local vs. global identification

 θ is globally identified if no  θ1 and  θ2 exist such that 
Σ(θ1) = Σ(θ2) unless  θ1 = θ2,  while local identification 
means that  θ is unique only near a specific  θ1 --- global 
identifiability implies local identifiability, but not the reverse

 Local identification can be numerically tested, while there is 
no feasible global test  --- local test is useful to rule out 
unidentifiable models; and more importantly, once we have 
an optimal solution (e.g., a converged ML solution) with its 
local test satisfied, we can say “the model is uniquely 
identified within the nearby search space around this 
optimal solution”



Two local identification tests 11

• Wald’s rank rule:
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where  σ is a vector of all distinctive elements of  Σ ---
implying that change of  Σ due to a slight change of an element 
of  θ is not the same as what would result from a slight change 
of another element

• If the information matrix G for  θ evaluated at  θ1 is not 
singular (i.e., its ACOV matrix exists),  θ1 is locally unique



• Either test could be misleading since the local test is numerical, 
depending on fallible estimation (due to, e.g., sampling, 
measurement errors)  --- thus, a locally unidentified model at a 
particular may be identifiable at the population value, and 
vice versa

• Consider the single-factor model with 3 indicators (just 
identified with  λ11 = 1) for cases of  (1)  when  λ21 = 0 in 
population and both  s12 and  s32 are somewhat different than 
0;  (2)  when the population value of  θ is identified while the 
data are “measured” to numerically suggest an unidentified 
model
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Recommendation for identification 13

• Rule out quickly any model that doesn’t pass t-rule

• See if any of the sufficient conditions applies

• Whenever feasible, see if all parameters can be written as 
functions of the data (see political demo example, pp. 251-254)

• Given an optimal solution (i.e., locally identified), see if there is 
any excessive sampling error for a parameter, which would 
suggest something wrong with the solution;  or given a locally 
unidentified model, see if any reason to doubt about the 
numerical result

 Apply multiple random starts to see if they yield the same 
result

 Use random sub-samples (e.g., split halves or bootstrap 
samples) to empirically see sampling fluctuation



Estimation 14

• All of the ML, ULS and GLS fitting functions have the same 
form as we learned for observed-variables-only model, except 
that parameter sets are different:

instead of, ,x Λ Φ Θ , , ,Β Γ Φ Ψ

• Non-convergence  --- may occur due to too stringent stopping 
criterion for the optimal fit, too early stop of iteration, bad start 
(cf. “rational” start), degeneracy (due to poor specification), 
oscillation, etc.

Local minima/maxima  --- multiple random starts needed 
(perhaps also with different “seeds”)

• Improper solution (e.g., negative variance)


