Consequences of measurement error

Psychology 588: Covariance structure and factor models



Scaling indeterminacy of latent variables 2

o Scale of a latent variable is arbitrary and “determined” by a
convention for convenience

* Typically set to variance of one (factor analysis convention) or
to be identical to an arbitrarily chosen indicator’s scale

By centering indicator variables, we set latent variables’ means
to zero

e Consider the following transformation:

X, =V, +AE+6, j=1..J, & =a+b&, b#0



o Ifall J indicators are considered simultaneously, vector
notation is more convenient:

X=V+AE+D, & =a+bé

a 1 «
—(V—EKJJ{EK)@& +0

meaning that the linear transformation of ¢ can be exactly
compensated in the accordingly transformed v" =v —Aa/b and
A" = Ab, leaving the errors & unchanged (i.e., same fit)



What's great about measurement errors in equation 4

 Regression weights and correlations are interpreted, implicitly
assuming that the “operationally defined” variables involve no
measurement error --- hardly realized for theoretical
constructs (e.g., self esteem, 1Q, etc.)

e Ignoring the measurement error will lead to inconsistent
estimates

 We will see consequences of ignoring measurement errors



Univariate consequences 5

« Consider a mean-included equation for X (hours worked per
week) to indicate ¢ (achievement motivation):

X=v+Al+6, E(&)=k, E(6)=0, E(&5)=0
E(X)=p, =v+ik
var(X )= A%¢+var(J)

Given only one indicator per latent variable, the intercept and
loading (i.e., weight) are simply scaling constants for ¢

However, if the ¢ scale is set comparable to the X scale (i.e.,
A =1), we see that var(X) is an over-estimation of ¢ = var(¢)
if 0 is notincluded in the equation



Bivariate relation and simple regression 6

e True data structure:

X = ﬂlg +0

p 1. Job satisfaction
Y=/4IN%E . satisfaction scale ] T
n=rE+( "

cov(x, y) is unbiased estimate of cov(¢, ) with A, =4, =1,
since no other variables (0 and &) can explain cov(x, y)

cov(&,m)=cov(&, ¥ +¢) =y
cov(x,y)=cov(E+6, yE+< +¢) =y



* From the previous equations, y = COV(§,77)/¢ and by analogy
with y =y x + " if measurement errors are ignored,

. _cov(xy) _ ( $

 var(x) -7 ¢+var(§)j:7/pxx

The parenthesized ratio (reliability) becomes 1 only with no
measurement error; otherwise, y” is an attenuated estimate of

y and y =5, /s, isaninconsistent estimator of y

« If A4, #A,, the bias of regression weight has an additional

factoras ¥ =(4,/4)yp.. - butsuch scaling is unusual
when there is only one indicator per latent variable



e Correlations:

2 :COV(SK’U)ZZ ¢
Pen pvar(n)  var(n)

2

cov(x,y) s
Py = var ( x )var(y) var( Jvar(y)
¢ var(n) y

_ _ 2
" var(x) var () var(n) Prebben

which shows an attenuation of the “true” correlation due to
measurement error, with the familiar correction formula:

= 0[PPy



Consequences in multiple regression 9

e True data structure:

n=y&+¢
Xx=+0
y=n+¢

with A =1 and /ly =1
« Ignoring measurement errors: y = y*'x + 5*
« 6., =CoV(§,77)=Ccov(§&y+{ )=y

6, =COV(X,y)=CoV(§+8,E7+{ +&)=Dy



* y=® ', andbyanalogy with y=y"x+¢",

Y =26, =Z!®y=(0+0,) @y

XX Xy

Without measurement error (@, = 0), Y =7, otherwise, AR

+ Alternatively written: y" =X X .y since X . =® -- where
X X . isthe OLS estimator of B in §=Bx+e, ie,
regression weights for prediction of by x

Again, without measurement error, E;i):xé =1

* Note: in Bollen (pp. 159-168), T, X, ,x  aremeantto be v,0
respectively, for the multiple regression model

ént ny’



* As avery simplified case, suppose Xx, Is the only fallible as:
X =6 +0
x.=¢&, 1=2,..q
with the true and estimated regression equations:
=0t 76+t y,e, 6
N=nx+18++rS +¢

* In this special case, the regression weight matrix has a simple
multiplicative form of bias (hint: use @ =® + O, ):

1+c 0
c, 1

xS xE T

zﬂz-{¢+®g1®=L{q%M”}{



o Consequently, resulting bias factors are:

*

71 = bflxl'fz'“fq 71

Vi = Vit bgpge g0 1520004

> Bias-factor for x; is less than 1 in absolute value (1 without
measurement error), and so ¥, is biased toward 0 --- the

bias factor bflxl-éz---fq indicates regression weight by in

» Consequences for x, i=2,...,q are additive, depending
on relationships between ¢; and ¢; holding all other Vs
constant, and 7y,



e So far all reasoning is based on rather unrealistic assumptions:

» Only single indicator per latent variable, and so its loading
becomes simply scaling constant

> Only one fallible IV

« Without such assumptions (e.g., all IVs fallible), consequences
of measurement error become too complicated and hard to

simplify algebraically --- no particular simple form of Z;ng

 One clear conclusion: all estimates are inconsistent ---
systematically different from what they meant to be



« Conseqguence In standardization:

\/ ¢, +var(s,)

standardized . = ¥, var (7) + var (2)

l

 Consequence in SMC is similar to the bivariate case:
pIim(RZ) > pIim(R*Z)
 What should we do with essentially omnipresent measurement

error?

> Use SEM which allows for measurement errors in the model
--- though we are limited in certain models regarding the
model identification (e.g., Table 5.1, p. 164)



Correlated errors of measurement 15

e Consequence in regression weights further complicated:
* -1 -1
Y = Zxx):xfy +2X O,

cov(e,5)
var (x)

For simple regression: y" =yp_ +

Now, »~ is not necessarily < y

 If correlated measurement errors are only within IVs (i.e., 65, =
0, X, =®+0, where @, is not diagonal), y" =X X .y
still holds (but the bias factor will have a more complicated
form, also involving off-diagonal entries of ® )



With multi-equations 16

In path models with sequential causal paths, consequences of
measurement errors very hard to simply generalize --- see the
union sentiment (Fig. 5.2, p. 169) and SES (Fig. 5.4, p. 173)

examples

If reliabilities are known, the corresponding error variances can
be constrained; if unknown, the error variances may be
modeled as free parameters provided that they are identifiable

To keep in mind: we need more than one indicator per latent
variable for identifiability and statistical testing --- leading to
measurement models with multiple indicators or CFA



