
Psychology 588: Covariance structure and factor models

Consequences of measurement error



Scaling indeterminacy of latent variables 2

• Scale of a latent variable is arbitrary and “determined” by a 
convention for convenience

• Typically set to variance of one (factor analysis convention) or 
to be identical to an arbitrarily chosen indicator’s scale

By centering indicator variables, we set latent variables’ means 
to zero

• Consider the following transformation:
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• If all  J indicators are considered simultaneously, vector 
notation is more convenient:
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meaning that the linear transformation of  ξ can be exactly 
compensated in the accordingly transformed  ν* = ν – λa/b  and  
λ* = λ/b,  leaving the errors δ unchanged (i.e., same fit)



What’s great about measurement errors in equation 4

• Regression weights and correlations are interpreted, implicitly 
assuming that the “operationally defined” variables involve no 
measurement error  --- hardly realized for theoretical 
constructs (e.g., self esteem, IQ, etc.)

• Ignoring the measurement error will lead to inconsistent 
estimates

• We will see consequences of ignoring measurement errors



Univariate consequences 5

• Consider a mean-included equation for  X (hours worked per 
week) to indicate  ξ (achievement motivation):

Given only one indicator per latent variable, the intercept and 
loading (i.e., weight) are simply scaling constants for  ξ

However, if the  ξ scale is set comparable to the  X scale (i.e., 
λ = 1), we see that  var(X) is an over-estimation of  ϕ = var(ξ)  
if δ is not included in the equation
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Bivariate relation and simple regression 6

• True data structure:

• cov(x, y) is unbiased estimate of  cov(ξ, η) with  λ1 = λ2 =1,
since no other variables (δ and  ε) can explain  cov(x, y)
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• From the previous equations,                              and by analogy 
with  y = γ*x + ζ * if measurement errors are ignored, 
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The parenthesized ratio (reliability) becomes 1 only with no 
measurement error; otherwise,  γ* is an attenuated estimate of  
γ and                       is an inconsistent estimator of  γ

• If the bias of regression weight has an additional 
factor as                                --- but such scaling is unusual 
when there is only one indicator per latent variable
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• Correlations:

which shows an attenuation of the “true” correlation due to 
measurement error, with the familiar correction formula:
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Consequences in multiple regression 9

• True data structure:
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with  Λx = I and  λy = 1

• Ignoring measurement errors:
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Without measurement error (Θδ = 0),  otherwise,

• Alternatively written:                         since                  --- where    
i is the OLS estimator of  B in                      i.e., 
regression weights for prediction of  ξ by  x

Again, without measurement error, 

• Note: in Bollen (pp. 159-168),                        are meant to be                      
respectively, for the multiple regression model

•
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with the true and estimated regression equations:
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• As a very simplified case, suppose  x1 is the only fallible as:
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• In this special case, the regression weight matrix has a simple 
multiplicative form of bias (hint: use                     ):
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 Bias-factor for  x1 is less than 1 in absolute value (1 without 
measurement error), and so       is biased toward 0  --- the 
bias factor                  indicates regression weight  b1 in       
ξ1 = b0 + b1x1 + b2ξ2 + … + bqξq

 Consequences for  xi,  i = 2,…,q are additive, depending 
on relationships between  ξ1 and  ξi holding all other IVs 
constant, and  γ1
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• Consequently, resulting bias factors are:
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• So far all reasoning is based on rather unrealistic assumptions:

 Only single indicator per latent variable, and so its loading 
becomes simply scaling constant

 Only one fallible IV

• Without such assumptions (e.g., all IVs fallible), consequences 
of measurement error become too complicated and hard to 
simplify algebraically  --- no particular simple form of a

• One clear conclusion: all estimates are inconsistent  ---
systematically different from what they meant to be
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• Consequence in SMC is similar to the bivariate case:
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• Consequence in standardization:

• What should we do with essentially omnipresent measurement 
error? 

 Use SEM which allows for measurement errors in the model  
--- though we are limited in certain models regarding the 
model identification (e.g., Table 5.1, p. 164)



Correlated errors of measurement 15
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• Consequence in regression weights further complicated:

For simple regression:
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• If correlated measurement errors are only within IVs (i.e., σδε =
0,  Σxx = Φ + Θσ where  Θσ is not diagonal),                        
still holds (but the bias factor will have a more complicated 
form, also involving off-diagonal entries of  Θσ)
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• In path models with sequential causal paths, consequences of 
measurement errors very hard to simply generalize  --- see the 
union sentiment (Fig. 5.2, p. 169) and SES (Fig. 5.4, p. 173) 
examples

• If reliabilities are known, the corresponding error variances can 
be constrained; if unknown, the error variances may be 
modeled as free parameters provided that they are identifiable

• To keep in mind: we need more than one indicator per latent 
variable for identifiability and statistical testing  --- leading to 
measurement models with multiple indicators or CFA

With multi-equations 16


