
SEM with observed variables: 
estimation

Psychology 588: Covariance structure and factor models



Estimation 2

• Tries to find a solution that best approximates ideally population 
covariance matrix  Σ,  but in reality a sample estimate  S

  ˆF f Σ θ S

• The “best” approximation is defined in various ways, leading to 
different fitting functions

• Our job is to find which is the best under what data conditions



Desirable fitting functions 3

• have the following properties:
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• Minimizing such fitting functions provides a consistent estimator 
of  θ (e.g., ML, ULS and GLS)  --- true for all functions to be 
considered



Desirable asymptotic properties of estimators 4

• Unbiased

• Consistent

• Efficient

Note: asymptotic means  “N →∞” by definition but its 
practical meaning is “as  N becomes sufficiently large”  
--- “how large is sufficient” will depend on many things such as 
complexity of the model, size of measurement errors, etc.
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• If                              is unbiased

• If                                                  is asymptotically unbiased

• If                                                                                      is 
consistent  --- or called 

• is efficient if its asymptotic variance is the minimum of all 
consistent estimator of  θ --- see Appendix B for more details 
on asymptotic properties of estimators
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Maximum likelihood 6

• ML assumes:

 Satisfactorily large sample

 All observed variables distributed multivariate normal  ---
we will consider later a relaxed alternative to this for 
exogenous  x

 All observations independent and identically distributed

• Minimizing its fitting function  FML maximizes joint log 
likelihood of the model parameters   given observed data  S

   1
ML

ˆ ˆlog tr logF p q    Σ SΣ S

Obviously, both  S and       must be nonsingular for  FML to be 
defined

Σ̂



How to optimize a fitting function? 7

• Find the partial derivatives w.r.t. all free model parameters  
a and solve                         --- necessary for 
minimization

• The second-derivative matrix                        is positive 
definite (nonsingular) at the      that minimizes  ---
sufficient for minimization

• Usually, there is no closed form solution to this problem; 
instead, the minimization attained by an iterative numerical 
method based on gradients  g (i.e., the 1st derivatives), given

1. starting values of  
2. step length (i.e., how much to change per iteration)
3. when to stop iteration

 F θ θ

 2F   θ θ θ
θ̂

 F  θ θ 0

 f θ

θ̂
θ̂



• Parameters are initialized at some rational (instead of random) 
values  --- e.g., reports from prior research, OLS estimates for 
loadings and causal paths, etc. 

• The iterative update can be written as:

       1ˆ ˆi i i i  θ θ C g

 Steepest descent:  C = I

 Newton-Raphson:  C = H–1,  H = 2nd partial derivatives (so 
called Hessian matrix)

• Iteration stops when                                    or                            
for all parameters, with  α at an arbitrarily small value (e.g., 
10−7)  

     1ˆ ˆi i
f f 


 θ θ    1ˆ ˆi i    



Properties of ML 9

• Asymptotically unbiased

• Consistent 

• Efficient

• ML estimates are asymptotically normal  --- while the 1st PDs = 
0 provides the estimates, square-roots of the diagonal entries of 
the 2nd PDs give their standard errors, allowing for a z-test

• FML is scale invariant:

   ML ML
ˆ ˆ, ,F FS Σ DSD DΣD

with a diagonal matrix  D,  with diagonal entries all non-zero 



• Scale freeness of ML estimates of  θ:                             is 
functionally equivalent to with                          
a and so 

  y By Γx ζ
  y By Γx ζ   
1 1, ,y y y x y
   B D BD Γ D ΓD ζ D ζ       

e.g., with                                     and                                   ,      
and      become standardized variables, and become 
standardized estimates of parameters

 What happens to the invariance and freeness if some 
parameters are subject to non-zero constant or equality 
constraints?

 1

1 1diag ,...,
py y ys s D  1

1 1diag ,...,
qx x xs s D y

x B Γ    and

xx D x
,yy D y



• Overall (badness of) fit of identifiable models:
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 Practical dilemma: asymptotic theory requires sufficiently 
large  N and the chi-square statistic proportionally 
increases with  N while its model  df doesn’t change

 Relaxed condition for exogenous  x: observed exogenous  
x don’t have to be multinormal; instead, if  y conditional to  
x is multinormal and  x is independent of  θ, then all ML 
properties hold



Unweighted least squares 12

• ULS assumes nothing

• Consistent but not efficient

• Not scale invariant or scale free

• No statistical testing available; bootstrapping may be used for 
the overall fit
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Generalized least squares 13

• GLS adjusts the residual matrix, for unequal variances 
and covariances

 21
GLS

1 ˆtr
2

F      S Σ W

Analogous to weighted least-squares for OLS  --- typically used 
to deal with heterogeneous variance over observations 
(vertically written):

ˆS Σ
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• Assuming that  W is positive-definite (asymptotically or given 
so), GLS estimates       are

 consistent

 distributed multinormal with known ACOV, and so a z-test 
available

 but not all  W−1 lead to efficient estimators

• Two more conditions needed for efficiency:

 sij is unbiased estimator of σij

 Entries of  S are asymptotically distributed multinormal, 
with mean of  σij and asymptotic covariance of

θ̂

   1acov ,ij gh ig jh ih jgs s N     



 The ACOV condition is satisfied if  x and  y are 
multinormal, or if “tail” of the distribution is not excessively 
thick or thin

• Most common choice of  W is  S,  and so  plimW = Σ

which is scale invariant and its estimates are scale free

• Like  FML,  (N – 1)FGLS is asymptotically chi-square distributed;  
consequently, with large  N,  FML and  FGLS should be close to 
each other if  H0 is true (i.e., the model correctly specified)  ---
see, e.g., Table 4.3, p. 121

  21
GLS

1 tr
2

F     
I Σ θ S



What if parametric assumptions not met 16

• Give up statistical inferences

• Use goodness (or badness) of fit indices (e.g., GFI, CFI, TLI, 
RMSEA, AIC, BIC, etc.)  --- these non-statistical measures 
assume nothing and, in consequence, parametric testing 
unavailable 

• Use non-parametric testing (e.g., bootstrap, randomization, 
etc.)  --- to be elaborated in the following

• If nonnormality is the only major issue, data might be 
transformed to approximate normality  --- consequently, the 
modeled linear relationships are for the transformed variables, 
which should  be substantively meaningful



The bootstrap 17

• The idea of bootstrapping evolved from jackknifing (due to 
Tukey) by introducing random selection of observational units 
from the sample, with replacement

• The bootstrap is one way of “empirically” obtaining a sampling 
distribution of a statistic (e.g.,  FML,  FGLS,  direct & indirect 
effects, etc.)

• The bootstrap distribution is asymptotically normal (as original 
N → ∞)

• When only covariance or correlation data are provided, 
resampling is not possible  --- pseudo raw data may be 
sampled from a parametric distribution, e.g.,  N(0, S) --- called 
“parametric bootstrapping”



“Bollen-Stine” bootstrap method 18

• Transforms the data  X so that the resulting covariance matrix 
equals to model-implied cov matrix as (vertically written):

0.5 0.5ˆZ XS Σ
which makes  H0 true in the bootstrap population  Z, and 
sampling error of the statistic becomes smaller (“efficient”) 
leading to a more confident statistical inference

• The idea of transforming  X to  Z with which  H0 is true was 
given by Beran and Srivastava (1985) more generally for the 
eigen structure of  cov(X)

• Bollen, K.A., & Stine, R.A. (1993). Bootstrapping goodness-of-fit measures in structural equation 
models. In K.A. Bollen & J.S. Long (Eds), Testing structural equation models (pp. 111-135). 
Newbury Park, CA: Sage.

• Beran, R., & Srivastava, M.S. (1985). Bootstrap tests and confidence regions for functions of a 
covariance matrix. Annals of Statsitics, 13, 95-115.

Σ̂



• Is the Bollen-Stine method always good?  --- depends on 
whether the specified model is correct:

The transformation “forces”  H0 to be true in the bootstrap 
population  Z so as to produce (narrower) sampling distribution 
of statistics (overall fits) for more powerful testing against  HA
(typically a nested model,  df0 < dfA) 

However, when  H0 is substantially false, a test for  HA based 
on a “wrong” transformation may be misleading



Scale and standardization 20

Y : job satisfaction (1 = least, 7 = most satisfied;  sy = 1.2)
X1:  annual salary in $10K  (sx1 = 1.6)
X2:  annual bonus in $10K  (sx2 = 0.5)
X3:  gender (1 = female, 0 = male,  sx3 = 0.5)

• How should we compare effect of the salary and bonus? 

• What is meant by 1.8 of gender effect? Would it be comparable 
to other effects if standardized? 

• If alternative equations considered only with  X1 and  X2, 
separately for each gender, any concern for comparability?
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