SEM with observed variables:
estimation

Psychology 588: Covariance structure and factor models



Estimation 2

* Tries to find a solution that best approximates ideally population
covariance matrix X, but in reality a sample estimate S

F=r(z(0)s)

 The “best” approximation is defined in various ways, leading to
different fitting functions

e Qur job is to find which is the best under what data conditions



Desirable fitting functions 3

* have the following properties:

£(S,2(0)) isascalar

f(S,2(0)) >0

£(S,Z(6))=0 ifandonlyif X(0)=S
7(S,Z(0)) is continuousbothin S and X(6)

e Minimizing such fitting functions provides a consistent estimator

of 0 (e.g., ML, ULS and GLS) --- true for all functions to be
considered



Desirable asymptotic properties of estimators 4

Unbiased
Consistent

Efficient

Note: asymptotic means “N — o by definition but its
practical meaning is “as N becomes sufficiently large”

--- “how large is sufficient” will depend on many things such as
complexity of the model, size of measurement errors, etc.



0: parametersinthe population

N

0, : estimateof 0 fromasampleof size N

If E(@N)zﬂ, 0, is unbiased

Ay

If E(@N) =0 as N >, 0, isasymptotically unbiased

If P(‘@N—O‘<a)=1 as N —>o forany a>0, 0, is
consistent --- or called "plim® =0"

0, is efficient if its asymptotic variance is the minimum of all

consistent estimator of 0 --- see Appendix B for more details
on asymptotic properties of estimators



Maximum likelihood 6

e ML assumes:
» Satisfactorily large sample

> All observed variables distributed multivariate normal ---
we Will consider later a relaxed alternative to this for

exogenous Xx
> All observations independent and identically distributed

« Minimizing its fitting function Fy; maximizes joint log
likelihood of the model parameters 0 given observed data S

F, = log‘)i‘ + tr(S):“.’l) —log|S|-(p+q)

Vo

Obviously, both S and X must be nonsingular for £y, to be
defined



How to optimize a fitting function?

* Find the partial derivatives w.r.t. all free model parameters
OF(0)/00 and solve OF(0)/00 =0 --- necessary for
minimization

» The second-derivative matrix 0°F(0) /5989’ IS positive

definite (nonsingular) at the § that minimizes f(0) ---
sufficient for minimization

e Usually, there is no closed form solution to this problem;
Instead, the minimization attained by an iterative numerical

method based on gradients g (i.e., the 1St derivatives), given

1. starting values of

2. step length (i.e., how much to change @ per iteration)
3. when to stop iteration



« Parameters are initialized at some rational (instead of random)
values --- e.g., reports from prior research, OLS estimates for

loadings and causal paths, etc.
* The iterative update can be written as:
gl — gl _ C(i)g(l‘)

» Steepest descent: C=1

> Newton-Raphson: C = H!, H = 2" partial derivatives (so
called Hessian matrix)

. A (l) A (i+1) Ai A(i+

* [teration stops when ‘f(ﬂ) —f(ﬂ) ‘<a or ‘9()—g( D

for all parameters, with a at an arbitrarily small value (e.g.,
1077)

<o




Properties of ML 9

« Asymptotically unbiased
o Consistent
o Efficient

e ML estimates are asymptotically normal --- while the 15t PDs =
O provides the estimates, square-roots of the diagonal entries of
the 2" PDs give their standard errors, allowing for a z-test

* Fyy Is scale invariant:
F\.(8.X)=F,, (DSD,DZD)

with a diagonal matrix D, with diagonal entries all non-zero



e Scale freeness of ML estimates of 0: y=By+I'x+C( is
functionally equivalentto y = ﬁy +IX +Zz with ¥ = D)y,
S _ > -1 T~ -1 &
=D X andso B= DBD ', I'=DID_, {=DZ
e.g., with D —diag( - s;l) and D_ —dlag( s‘l), y

and x become standardlzed variables, and B and F become
standardized estimates of parameters

> What happens to the invariance and freeness if some
parameters are subject to non-zero constant or equality
constraints?



e Overall (badness of) fit of identifiable models:
(N—I)FML ~ 5
with H, : S=%, df:(p+q)(p+q+1)/2—t

» Practical dilemma: asymptotic theory requires sufficiently
large N and the chi-square statistic proportionally
increases with N while its model df doesn’t change

> Relaxed condition for exogenous X:. observed exogenous
x don’t have to be multinormal; instead, if y conditional to
x is multinormal and x is independent of 0, then all ML
properties hold




Unweighted least squares 12

e ULS assumes nothing
e Consistent but not efficient
 Not scale invariant or scale free

* No statistical testing available; bootstrapping may be used for
the overall fit



Generalized least squares 13

* GLS adjusts the residual matrix, S—X for unequal variances
and covariances

Fas =] ([S-£]W)’]

Analogous to weighted least-squares for OLS --- typically used
to deal with heterogeneous variance over observations

(vertically written):

BOLS — (X’X)_l X'y

buis = (XW'X) ' XW'y, W =diag(c?.....7 )

WLS



 Assuming that W is positive-definite (asymptotically or given
s0), GLS estimates 9 are

> consistent

> distributed multinormal with known ACOV, and so a z-test
avalilable

> butnotall W! lead to efficient estimators

 Two more conditions needed for efficiency:

> Sy IS unbiased estimator of o

> Entries of S are asymptotically distributed multinormal,

with mean of o0, and asymptotic covariance of

_ —1
acov(sy.,sgh) =N (O'l.gO'jh + O'l.hO'jg)



» The ACOV condition Is satisfied if x and y are

multinormal, or if “tail” of the distribution is not excessively
thick or thin

e Most common choice of W is S, and so plimW =X

F = %tr[(l - 2(9)81)2}

which Is scale invariant and its estimates are scale free

o Like Fyy, (N—1)Fgs is asymptotically chi-square distributed,
consequently, with large N, F,; and F ¢ should be close to

each other if H, Is true (i.e., the model correctly specified) ---
see, e.g., Table 4.3, p. 121



What if parametric assumptions not met 16

e Give up statistical inferences

 Use goodness (or badness) of fit indices (e.g., GFI, CFI, TLlI,
RMSEA, AIC, BIC, etc.) --- these non-statistical measures
assume nothing and, in consequence, parametric testing
unavailable

« Use non-parametric testing (e.g., bootstrap, randomization,
etc.) --- to be elaborated in the following

 If nonnormality is the only major issue, data might be
transformed to approximate normality --- consequently, the
modeled linear relationships are for the transformed variables,
which should be substantively meaningful



The bootstrap 17

e The idea of bootstrapping evolved from jackknifing (due to
Tukey) by introducing random selection of observational units
from the sample, with replacement

 The bootstrap is one way of “empirically” obtaining a sampling
distribution of a statistic (e.9., Fyy, fgr g direct & indirect
effects, etc.)

* The bootstrap distribution is asymptotically normal (as original
N — o0)

 When only covariance or correlation data are provided,
resampling is not possible --- pseudo raw data may be
sampled from a parametric distribution, e.g., N(0, S) --- called
“parametric bootstrapping”



“Bollen-Stine” bootstrap method 18

 Transforms the data X so that the resulting covariance matrix
equals to model-implied cov matrix ¥ as (vertically written):

Z — XS —O.SiO.S

which makes H, true in the bootstrap population Z, and
sampling error of the statistic becomes smaller (“efficient”)
leading to a more confident statistical inference

e The idea of transforming X to Z with which H, is true was
given by Beran and Srivastava (1985) more generally for the
eigen structure of cov(X)

* Bollen, K.A., & Stine, R.A. (1993). Bootstrapping goodness-of-fit measures in structural equation
models. In K.A. Bollen & J.S. Long (Eds), Testing structural equation models (pp. 111-135).
Newbury Park, CA: Sage.

 Beran, R., & Srivastava, M.S. (1985). Bootstrap tests and confidence regions for functions of a
covariance matrix. Annals of Statsitics, 13, 95-115.



Is the Bollen-Stine method always good? --- depends on
whether the specified model is correct:

The transformation “forces” H, to be true in the bootstrap
population Z so as to produce (narrower) sampling distribution
of statistics (overall fits) for more powerful testing against H,
(typically a nested model, df, < df,)

However, when H, is substantially false, a test for H, based
on a “wrong” transformation may be misleading



Scale and standardization 20

Y=-3+05X,+2X,+1.8X,+¢
Y =0.67X,+0.83X, +0.75X, + ¢ (standardized)

Y: ]ob satisfaction (1 = least, 7 = most satisfied; s, = 1.2)
X,: annual salary in $10K (s ., = 1.6)
X,: annual bonus in $10K (s,, = 0.5)

X;: gender (1 = female, 0 = male, s, =0.5)

 How should we compare effect of the salary and bonus?

 What is meant by 1.8 of gender effect? Would it be comparable
to other effects if standardized?

« [f alternative equations considered only with X, and X,,
separately for each gender, any concern for comparability?



