Notation and preliminaries

Psychology 588: Covariance structure and factor models

- latent variables
- δ_1 error terms (unenclosed)
- → causal path or factor loading/weight

covariance or unconstrained (nonzero) relationship between exogenous variables

$$y = b_1 x_1 + b_2 x_2 + b_3 x_3 + e$$
$$= \mathbf{b'} \mathbf{x} + e$$

• How could the intercept term enter into the diagram?

Principal component model (rank-reduced)

- 2 orthogonal components fitted to 4 manifest variables
- Rotationally indeterminant if no component loadings are constrained (e.g., to zero)

LISREL notation

- Like the standard matrix notation, the LISREL notation uses
 Lower italic: a scalar (as a variable or a parameter; *cf. X*)
 Lower bold: vector
 Upper bold: matrix
- Uses Roman letters only for observed (or manifest, indicator) variables (e.g., x, y) and Greek letters for all others (i.e., latent variables and model parameters; ξ, Γ)
- Distinguishes between exogenous (independent) vs. endogenous (dependent) variables parts
 - We will consider later an alternative notation and model representation --- the reticular action model (RAM, chap. 9)

Symbol	size	Definition
Variables		
ξ	$n \times 1$	latent exogenous variables
η	$m \times 1$	latent endogenous variables
ζ	$m \times 1$	specification error terms
Coefficients		
Γ	$m \times n$	coefficient matrix for ξ
В	$m \times m$	coefficient matrix for η
Covariance matrix		
Φ	$n \times n$	covariance matrix of ξ , $E(\xi\xi')$
Ψ	$m \times m$	covariance matrix of ζ , $E(\zeta\zeta')$

Symbol	size	Definition
variables		
X	q imes 1	observed indicators of ξ
У	$p \times 1$	observed indicators of η
δ	q imes 1	measurement errors for x
3	$p \times 1$	measurement errors for y
coefficients		
Λ_x	$q \times n$	loadings relating \mathbf{x} to $\boldsymbol{\xi}$
$\mathbf{\Lambda}_y$	$p \times m$	loadings relating y to η
covariance matrix		
$oldsymbol{\Theta}_{\delta}$	q imes q	covariance matrix of δ , $E(\delta\delta')$
$oldsymbol{\Theta}_arepsilon$	$p \times p$	covariance matrix of ε , $E(\varepsilon \varepsilon')$

$$\boldsymbol{\eta} = \mathbf{B}\boldsymbol{\eta} + \boldsymbol{\Gamma}\boldsymbol{\xi} + \boldsymbol{\zeta} \quad \text{or} \quad \boldsymbol{\eta} = \left(\mathbf{I} - \mathbf{B}\right)^{-1} \left(\boldsymbol{\Gamma}\boldsymbol{\xi} + \boldsymbol{\zeta}\right)$$
$$\begin{bmatrix} \eta_1 \\ \vdots \\ \beta_{21} & \ddots & \vdots \\ \beta_{21} & \ddots & \vdots \\ \vdots & \ddots & \beta_{m-1,m} \\ \beta_{m1} & \cdots & \beta_{m,m-1} & 0 \end{bmatrix} \begin{bmatrix} \eta_1 \\ \vdots \\ \eta_m \end{bmatrix} + \begin{bmatrix} \gamma_{11} & \cdots & \gamma_{1n} \\ \vdots & \ddots & \vdots \\ \gamma_{m1} & \cdots & \gamma_{mn} \end{bmatrix} \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix} + \begin{bmatrix} \zeta_1 \\ \vdots \\ \zeta_m \end{bmatrix}$$
$$\boldsymbol{\eta}_i = \left(\dots + \beta_{i(i-2)} \eta_{i-2} + \beta_{i(i-1)} \eta_{i-1}\right) + \left(\gamma_{i1}\xi_1 + \gamma_{i2}\xi_2 + \dots + \gamma_{in}\xi_n\right) + \zeta_i$$

• Equations are <u>linear</u> both in the variables (η, ξ) and in the parameters (β, γ) ; same for equations for manifest variables

•
$$E(\mathbf{\eta}) = \mathbf{0}, \quad E(\boldsymbol{\xi}) = \mathbf{0}, \quad E(\boldsymbol{\zeta}) = \mathbf{0}$$

- $E(\zeta \xi') = \mathbf{0}_{m \times n}$
- $(\mathbf{I} \mathbf{B})$ is nonsigular so that $(\mathbf{I} \mathbf{B})^{-1}$ exists
- ζ_i has a <u>homogeneous</u> variance for all subjects, i.e., $E(\zeta_{ik}^2) = \operatorname{var}(\zeta_i)$ for k = 1, ..., N, i = 1, ..., m

and <u>independent</u>, i.e., $\operatorname{cov}(\zeta_{ik}, \zeta_{il}) = 0$ for all $k \neq l$; otherwise, multilevel structure

$$\mathbf{x} = \mathbf{\Lambda}_{x} \boldsymbol{\xi} + \boldsymbol{\delta}$$

 $\mathbf{y} = \mathbf{\Lambda}_{y} \mathbf{\eta} + \mathbf{\varepsilon}$

• Often, a <u>uni-factorial</u> structure is imposed on Λ_x , Λ_y such as:

$$\begin{bmatrix} x_1 \\ \vdots \\ x_q \end{bmatrix} = \begin{bmatrix} \lambda_{11} & \cdots & \lambda_{1n} \\ \vdots & \ddots & \vdots \\ \lambda_{q1} & \cdots & \lambda_{qn} \end{bmatrix} \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix} + \begin{bmatrix} \delta_1 \\ \vdots \\ \delta_q \end{bmatrix}$$

$$x_i = \lambda_{i1}\xi_1 + \lambda_{i2}\xi_2 + \dots + \lambda_{in}\xi_n + \delta_i$$

$$\boldsymbol{\Lambda}_{x} = \begin{bmatrix} \lambda_{11} & 0 & 0 \\ \lambda_{21} & 0 & 0 \\ \lambda_{31} & 0 & 0 \\ 0 & \lambda_{42} & 0 \\ 0 & \lambda_{52} & 0 \\ 0 & \lambda_{62} & 0 \\ 0 & 0 & \lambda_{73} \\ 0 & 0 & \lambda_{83} \\ 0 & 0 & \lambda_{93} \end{bmatrix}$$

• All latent variables expected to be zero --- a natural consequence when fitting mean-centered manifest variables

$$E(\mathbf{\eta}) = \mathbf{0}, \quad E(\mathbf{\xi}) = \mathbf{0}, \quad E(\mathbf{\varepsilon}) = \mathbf{0}, \quad E(\mathbf{\delta}) = \mathbf{0}$$

But not so natural when multiple groups or hierarchically nested (multilevel) data are considered

• Observed variables are correlated only through the modeled latent variables and parameters (latent path coefficients and loadings), with simplifying conditions of

$$E(\epsilon \eta') = \mathbf{0}, \quad E(\epsilon \xi') = \mathbf{0}, \quad E(\epsilon \zeta') = \mathbf{0}, \quad E(\epsilon \delta') = \mathbf{0}$$
$$E(\delta \xi') = \mathbf{0}, \quad E(\delta \eta') = \mathbf{0}, \quad E(\delta \zeta') = \mathbf{0}$$

• Typically, Θ_{δ} and Θ_{ε} are considered to be diagonal matrices, i.e., measurement errors of the indicators are uncorrelated; however, there may be justifiable cases for non-diagonal Θ_{δ} and Θ_{ε} or even $E(\varepsilon \delta') \neq 0$, for some selective entries

e.g., Fig. 2.6 (p. 37) of industrialization and democracy model,

- Like ζ , δ and ε are assumed to be homoscedestic and independent (i.e., iid)
- We will consider later distributional assumptions for manifest variables \boldsymbol{x} and \boldsymbol{y}

• Where is the double-headed arrow defined in the equation?

• Following rules may be useful:

$$\operatorname{cov}(c, X) = 0$$

$$\operatorname{cov}(cX_1, X_2) = c \cdot \operatorname{cov}(X_1, X_2)$$

$$\operatorname{cov}(X_1 + X_2, X_3) = \operatorname{cov}(X_1, X_3) + \operatorname{cov}(X_2, X_3)$$

• But the standard algebra will do; suppose, e.g., $x_1 = \lambda_1 \xi_1 + \delta_1$, $x_2 = \lambda_2 \xi_1 + \delta_2$:

$$\operatorname{cov}(x_{1}, x_{2}) = E(x_{1}x_{2}) = E(\lambda_{1}\xi_{1} + \delta_{1})(\lambda_{2}\xi_{1} + \delta_{2})$$
$$= E(\lambda_{1}\lambda_{2}\xi_{1}\xi_{1} + \lambda_{1}\delta_{2}\xi_{1} + \lambda_{2}\delta_{1}\xi_{1} + \delta_{1}\delta_{2})$$
$$= \lambda_{1}\lambda_{2}E(\xi_{1}\xi_{1}) = \lambda_{1}\lambda_{2}\phi_{11}$$

• Matrix algebra useful for operation of covariance matrices:

$$\mathbf{x} = \mathbf{\Lambda}_{x} \boldsymbol{\xi} + \boldsymbol{\delta},$$

$$\operatorname{cov}(\mathbf{x}, \mathbf{x}) = E(\mathbf{x}\mathbf{x}') = E(\mathbf{\Lambda}_{x} \boldsymbol{\xi} + \boldsymbol{\delta})(\boldsymbol{\xi}' \mathbf{\Lambda}_{x}' + \boldsymbol{\delta}')$$

$$= E(\mathbf{\Lambda}_{x} \boldsymbol{\xi} \boldsymbol{\xi}' \mathbf{\Lambda}_{x}' + \mathbf{\Lambda}_{x} \boldsymbol{\xi} \boldsymbol{\delta}' + \boldsymbol{\delta} \boldsymbol{\xi}' \mathbf{\Lambda}_{x}' + \boldsymbol{\delta} \boldsymbol{\delta}')$$

$$= \mathbf{\Lambda}_{x} E(\boldsymbol{\xi} \boldsymbol{\xi}') \mathbf{\Lambda}_{x}' + E(\boldsymbol{\delta} \boldsymbol{\delta}') = \mathbf{\Lambda}_{x} \mathbf{\Phi} \mathbf{\Lambda}_{x}' + \mathbf{\Theta}_{\delta}$$

- Direct effect: unmediated expected change on a variable due to another --- a path coefficient
- Indirect effect: all other possible influences from a variable to another, other than its direct effect --- product of all involved mediating path coefficients for each indirect effect
- Total effect = direct effect + all indirect effects
- Recursive vs. non-recursive models
- convergent vs. divergent series of indirect effects

• Direct effect of x_1 on $y_2 = \gamma_{21}$

Indirect effect = $\gamma_{11}\beta_{21}$ --- expected change on y_2 due to 1 unit change on x_1

Total effect = $\gamma_{21} + \gamma_{11}\beta_{21}$

Effect decomposition example 2

• non-recursive since all 3 variables indirectly influence itself

• Indirect effect of y_1 on y_3 :

 $\beta_{21}\beta_{32} + \beta_{21}\beta_{32} \left(\beta_{13}\beta_{21}\beta_{32}\right) + \beta_{21}\beta_{32} \left(\beta_{13}\beta_{21}\beta_{32}\right)^2 + \cdots$

$$=\beta_{21}\beta_{32}\sum_{k=0}^{\infty}(\beta_{13}\beta_{21}\beta_{32})^{k}$$