
Bare minimum on matrix algebra

Psychology 588: Covariance structure and factor models



Matrix multiplication 2

• Consider three notations for linear combinations
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• Matrix multiplication is a very efficient way of writing 
simultaneous equation systems (i.e., linear combinations)
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Inner (scalar) product 3

• Suppose  Y contains  p DVs as columns,  X contains  q IVs, 
and  B contains regression weights as:
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• Then an arbitrary y-entry for subject  i and variable  j is a 
linear combination of subject  i’s X-scores weighted for the j-th
variable:
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Outer products 4

• If all entries in  Y are considered simultaneously,  Y can be 
shown as a sum of  q outer products:
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• Yk accounts for a fraction of the DVs’ variances, explained by 
the k-th IV  xk with its weights  bk for the  p DVs
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Algebraic properties of matrix multiplication 5

• Suppose all following multiplications are defined:

   

 

 c c c





  

  

AB BA

AB C A BC

A B C AB AC

A B A B

in general



Trace 6

• Trace is defined for square matrices as sum of diagonal 
elements:
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• Useful for operations of sum of squares (typically of 
discrepancy of a model from the data) or weighted SS, along 
with the following properties:
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• For example, consider a residual matrix under the principal 
component model

 D X FA

• Then, sum of squares of all residuals is:
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• The least-squares estimator of  A is the one that minimizes  F



• Determinant of an  n × n matrix                     denoted by          
is defined as:
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where            called “minor”, is the determinant of a submatrix
of  A without row  i and column  j,  and                      is called 
“cofactor” for element  (i, j)
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Inverse of square matrices 9

 AB BA I

• If all rows of  A are linearly independent, there exists a unique
n × n matrix  B such that:

• B is denoted by  A–1 and called “the inverse of  A”

• The (j,i)-th entry of  A–1 is                         --- note the reversed 

subscripts

• Thus, it’s obvious that                for  A–1 to be defined 
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Rank 10

• Rank of an  m × n (m ≥ n) matrix  A is defined as the number 
of linearly independent columns of  A,  with the following crucial 
properties
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• A square matrix must be “full-rank” for its inverse to exist  ---
necessary for estimation of parameters in SEM since it involves 
the inverse of the data covariance matrix and its determinant

• Following are all equivalent: “full-rank”, “nonsingular”, “positive 
definite”, 0A



Spectral decomposition 11

• For an  n × n matrix  A,  an eigenvalue e is defined as
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• For any symmetric matrix  A, all  n eigenvalues are 
nonnegative (i.e., positive semi-definite or nonnegative 
definite); if collectively written,

 1, , diag , , ne e  

   

AV VE V V I E

A VEV V AV E



where eigenvalues are successively maximum, with
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Singular value decomposition 12

• While eigenvalue decomposition is defined for square matrices 
(spectral decomposition as a special case), SVD is defined 
more generally for any rectangular matrix as:

,    X UTV U U V V I

  Z UTV FV

where  T is a diagonal matrix with nonnegative “singular 
values” on the diagonal and columns of  U and  V are 
orthonormal singular vectors

• For example, if  Z is a matrix of deviation scores, the principal 
component model of its sample covariance matrix has simple 
relationship to its SVD as:



• In terms of the data covariance matrix,

• If the factor-analysis convention of scaling is desired (i.e., 
components/factors scaled to have variance of one),
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• Alternatively, SVD of                                         removes the 
constant scaling factor so that  
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Lower-rank approximation (Eckart-Young theorem) 14

• Suppose we want to extract  R principal components from an  
N × p,  rank-p data matrix X (N ≥ p > R), then they are given 
by the largest  R singular values and their singular vectors

where                represents the R-dimensional subspace where 
the data variance is maximally captured and                 indicates 
(p – R)-dimensional subspace orthogonal to  

• The  R columns in  V1 are orthogonal reference axes in the R-
dimensional space and the rows of  U1T1 are coordinates of 
the  N observations projected onto this space
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• Likewise, the rank-R approximation can be shown for 
covariance matrix                                by the spectral 
decomposition:

where                is the R-dimensional approximation to  S that 
minimizes SS of the residuals

• In addition, the left singular vectors of  Z can be found by the 
spectral decomposition of                          as
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Further operations 16

• “vec” operation vectorizes a matrix stacking columns one below 
another
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• Kronecker product of  A and  B of any order is defined as


