Bare minimum on matrix algebra

Psychology 588: Covariance structure and factor models



Matrix multiplication

Consider three notations for linear combinations
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Matrix multiplication is a very efficient way of writing
simultaneous equation systems (i.e., linear combinations)




Inner (scalar) product 3

e Suppose Y contains p DVs as columns, X contains g IVs,
and B contains regression weights as:

Y|l 0 Ny X ot Ky b| - blp
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e Then an arbitrary y-entry for subject i and variable ; is a

linear combination of subject i’'s X-scores weighted for the j-th
variable:

Y= {yij}pr s Yy =Xubyy+ Xy o+ X, b,



Outer products 4

« Ifall entriesin Y are considered simultaneously, Y can be
shown as a sum of g outer products:

le coe pr le co qu bql co bqp |

* Y, accounts for a fraction of the DVs’ variances, explained by
the k-th IV X, with its weights b, for the p DVs



Algebraic properties of matrix multiplication

o Suppose all following multiplications are defined:

AB # BA ingeneral
(AB)CzA(BC)
A(B+C)=AB+AC

c(A+B)=cA+cB



Trace

« Trace Is defined for square matrices as sum of diagonal
elements:
n
tr(Anxn) = Zaii
i=1

e Useful for operations of sum of squares (typically of
discrepancy of a model from the data) or weighted SS, along
with the following properties:

tr(A) = tr(A’)
tr(AB) = tr(BA), tr(ABC) = tr(CAB) = tr(BCA)

tr(A + B) = tr(A) + tr(B)



For example, consider a residual matrix under the principal
component model

D=X-FA'
Then, sum of squares of all residuals is:
F= tr(D’D)

tr(X' = AF")(X - FA)

tr(X'X) = 2tr(X'FA") + tr(AF'FA)

The least-squares estimator of A is the one that minimizes F



Determinant 8

» Determinant of an n x n matrix A:{aij}, denoted by |A|
Is defined as:

Al=a;,, if n=1

n

. i+ . :
A= Zaif A;|(=1)"" forany i, if n>1
j=1
where ‘Aij , called “minor”, is the determinant of a submatrix

of A without row i and column j, and ‘Aij‘(—l)”f is called
“cofactor” for element (i, j)



Inverse of square matrices 9

If all rows of A are linearly independent, there exists a unigue
n X n matrix B such that:

AB =BA =1
B isdenoted by A7l and called “the inverse of A”

‘A_Z'J'(_l)”f --- note the reversed

A

The (j,i)-th entry of Al is

subscripts

Thus, it's obvious that |A|#0 for A! to be defined



Rank

10

« Rankofan m X n(m=>n) matrix A is defined as the number

of linearly independent columns of A, with the following crucial
properties

rank (A) < min(m,n)
rank (AB) < min(rank (A),rank (B))
* A square matrix must be “full-rank” for its inverse to exist ---

necessary for estimation of parameters in SEM since it involves
the inverse of the data covariance matrix and its determinant

« Following are all equivalent: “full-rank”, “nonsingular”, “positive
definite”, ‘A‘ + ()



Spectral decomposition 11

« Foran n X n matrix A, an eigenvalue e is defined as
Av=ev, v£0, Vvv=1 < VAv=e

e For any symmetric matrix A, all n eigenvalues are
nonnegative (i.e., positive semi-definite or nonnegative
definite); if collectively written,

AV =VE, VV=I, E= diag(el,...,en)
A=VEV' < VAV =E --- spectral decomposition

where eigenvalues are successively maximum, with

r(E)=tr(A)  of. ljej _|A



Singular value decomposition 12

« While eigenvalue decomposition is defined for square matrices
(spectral decomposition as a special case), SVD is defined
more generally for any rectangular matrix as:

X=UTV', UU=VV=I

where T is a diagonal matrix with nonnegative “singular

values” on the diagonal and columns of U and V are
orthonormal singular vectors

« For example, if Z is a matrix of deviation scores, the principal

component model of its sample covariance matrix has simple
relationship to its SVD as:

Z=UTV' =FV’



In terms of the data covariance matrix,
S=(N-1)'Z'Z=(N-1) VTUUTV'
=V((N-1)"T*)V' = VEV

If the factor-analysis convention of scaling is desired (i.e.,
components/factors scaled to have variance of one),

Z=UTV = (\/N—IU)(\/N—I_IVT), — BV

Alternatively, SVD of Z =N —1 'Z=UTV' removes the
constant scaling factor so that T°=E



Lower-rank approximation (Eckart-Young theorem) 14

Suppose we want to extract R principal components from an
N X p, rank-p data matrix X (N> p > R), then they are given
by the largest R singular values and their singular vectors

X=UTV'=UTV/ +U,T,V.,

T1 0
U:[Ul,Uz], V:[vaz]» T= 0 T2

where U, TV, represents the R-dimensional subspace where
the data variance is maximally captured and U,T,V, indicates

(p — R)-dimensional subspace orthogonal to U, T,V/

The R columnsin V, are orthogonal reference axes in the R-
dimensional space and the rows of U, T, are coordinates of
the N observations projected onto this space



» Likewise, the rank-R approximation can be shown for

covariance matrix S=(N — 1)_1 Z'Z by the spectral
decomposition:

S=VEV'=V,EV +V,E,V.,

— _ El O
V=[V,V,]. E_{O Ej

where V,E,V/ isthe R-dimensional approximationto S that
minimizes SS of the residuals S—V,E,V, =V,E,V,

« In addition, the left singular vectors of Z can be found by the
spectral decomposition of (N —1)_1 Z7' as

(N-1)"2ZZ'=UEU =U,E,U; + U,E,U},
U :[U19U2]



Further operations 16

e “vec” operation vectorizes a matrix stacking columns one below
another

vecA =

L 7 _1mnx]

« Kronecker product of A and B of any order is defined as

n

_aHB -+ a, B
A ®B _ =| + -

mxn p><q . . .
a B - a B

| "ml mn = _Impxng




